用户名: 密码: 验证码:
降雨量改变对黄河三角洲滨海湿地土壤呼吸的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of changes in precipitation on soil respiration in coastal wetlands of the Yellow River Delta
  • 作者:李新鸽 ; 韩广轩 ; 朱连奇 ; 孙宝玉 ; 姜铭 ; 宋维民 ; 路峰
  • 英文作者:LI Xinge;HAN Guangxuan;ZHU Lianqi;SUN Baoyu;JIANG Ming;SONG Weimin;LU Feng;Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences;College of Environment and Planning, Henan University;School of Ecological and Environmental Sciences, East China Normal University;Administration Bureau of the Yellow River Delta National Nature Zone Reserve;
  • 关键词:降雨处理 ; 土壤呼吸 ; 滨海湿地 ; 植被生物量 ; 黄河三角洲
  • 英文关键词:precipitation treatment;;soil respiration;;coastal wetlands;;vegetation biomass;;the Yellow River Delta
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中国科学院烟台海岸带研究所中国科学院海岸带环境过程与生态修复重点实验室;河南大学环境与规划学院;华东师范大学生态与环境科学学院;山东省黄河三角洲国家级自然保护区管理局;
  • 出版日期:2019-04-17 09:51
  • 出版单位:生态学报
  • 年:2019
  • 期:13
  • 基金:国家自然科学基金项目(41671089,41706097);; 中国科学院重点部署项目(KFZD-SW-112)
  • 语种:中文;
  • 页:217-231
  • 页数:15
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:S154
摘要
全球变化背景下,降雨模式变化造成土壤水分波动是引起土壤呼吸动态变化的重要驱动力。但滨海湿地如何响应降雨模式变化,进而引起生态系统蓝碳功能改变的机制尚不清楚。依托黄河三角洲滨海湿地增减雨野外控制试验平台,采用土壤碳通量观测系统(LI—8100)对湿地土壤呼吸速率进行监测,探究了2017年黄河三角洲滨海湿地土壤呼吸及环境、生物因子对减雨60%、减雨40%、对照60%、对照40%、增雨40%、增雨60%等变化的响应及机制。结果表明:1)随着降雨量增加,湿地土壤温度逐渐降低;同时增雨和减雨处理均显著提高了湿地土壤湿度(P<0.05)。(2)降雨量变化显著影响湿地植被物种组成、地上和地下生物量分配以及植被根冠比(P<0.05)。增雨40%和增雨60%均显著提高了湿地植物种类和植被根冠比,但同时显著降低了湿地植被地上生物量。此外,增雨40%和减雨60%处理均显著提高了湿地植被地下生物量。(3)降雨量变化对2017年湿地季节土壤呼吸无显著影响,但在湿地非淹水期,增雨60%和增雨40%均显著提高了湿地土壤呼吸速率(P<0.05)。(4)2017年湿地不同降雨处理的土壤呼吸与土壤湿度均呈二次曲线关系(P<0.05),相关系数随降雨量增加而降低;同时在非淹水期不同降雨处理的土壤呼吸与土壤温度均指数相关(P<0.05),土壤呼吸温度敏感性(Q_(10))随降雨量增加而增大。在淹水期不同降雨处理土壤呼吸与土壤温度无显著相关关系。(5)淹水期土壤呼吸速率与地表水位呈指数负相关(P<0.001)。
        Soil moisture fluctuation caused by changes in precipitation patterns associated with global change is an important driving force for the dynamic changes of soil respiration. However, it is unclear how coastal wetlands respond to changes in precipitation patterns, and thus cause changes in the ecosystem blue carbon function. To explore the response and mechanism of soil respiration and environmental and biological factors to precipitation changes, the soil carbon flux observation system was applied to monitor wetland soil respiration rates under different precipitation treatments relying on increased and decreased precipitation fields outside the control experiment platform of the Yellow River Delta coastal wetland in 2017. The results showed that:(1) with increased precipitation, the wetland soil temperature gradually decreased; simultaneously, both precipitation increase and decrease significantly increased wetland soil moisture(P<0.05);(2) changes in precipitation significantly affected vegetation species composition, aboveground and belowground biomass allocation, and root/shoot ratio(P < 0.05). A 40% and 60% precipitation increase significantly increased the wetland plant species and vegetation root shoot ratio; however, it significantly reduced the aboveground biomass of wetland vegetation. In addition, a 40% increase and 60% decrease of precipitation significantly increased the aboveground biomass of wetland vegetation;(3) there was no significant effect of precipitation changes on annual soil respiration in wetlands. Nevertheless, a 60% and 40% precipitation increase both significantly increased the soil respiration rate in wetlands during the non-flooding season(P < 0.05);(4) the wetland soil respiration and moisture showed a quadratic curve(P < 0.05) with the correlation coefficient decreasing with precipitation increase. Furthermore, during the wetland non-flooding season, soil respiration and temperature were exponentially correlated(P < 0.05) with soil temperature sensitivity(Q_(10)) increasing with increasing precipitation. There was no significant correlation between soil respiration and temperature during flooding periods;(5) during the flooding period, the soil respiration rate was inversely correlated with the surface water level(P<0.001).
引文
[1] McLeod E,Chmura G L,Bouillon S,Salm R,Bj?rk M,Duarte C M,Lovelock C E,Schlesinger W H,Silliman B R.A blueprint for blue carbon:toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2.Frontiers in Ecology and the Environment,2011,9(10):552- 560.
    [2] Poffenbarger H J,Needelman B A,Megonigal J P.Salinity influence on methane emissions from tidal marshes.Wetlands,2011,31(5):831- 842.
    [3] Hopkinson C S,Cai W J,Hu X P.Carbon sequestration in wetland dominated coastal systems—a global sink of rapidly diminishing magnitude.Current Opinion in Environmental Sustainability,2012,4(2):186- 194.
    [4] Chmura G L,Anisfeld S C,Cahoon D R,Lynch J C.Global carbon sequestration in tidal,saline wetland soils.Global Biogeochemical Cycles,2003,17(4):1111.
    [5] Donato D C,Kauffman J B,Murdiyarso D,Kurnianto S,Stidham M,Kanninen M.Mangroves among the most carbon-rich forests in the tropics.Nature Geoscience,2011,4(5):293- 297.
    [6] Livesley S J,Andrusiak S M.Temperate mangrove and salt marsh sediments are a small methane and nitrous oxide source but important carbon store.Estuarine,Coastal and Shelf Science,2012,97(2):19- 27.
    [7] Chambers L G,Osborne T Z,Reddy K R.Effect of salinity-altering pulsing events on soil organic carbon loss along an intertidal wetland gradient:a laboratory experiment.Biogeochemistry,2013,115(1/3):363- 383.
    [8] Dixon R K,Solomon A M,Brown S,Houghton R A,Trexier M C,Wisniewski J.Carbon pools and flux of global forest ecosystems.Science,1994,263(5144):185- 190.
    [9] Bond-Lamberty B,Thomson A.Temperature-associated increases in the global soil respiration record.Nature,2010,464(7288):579- 582.
    [10] Schimel D S.Terrestrial ecosystems and the carbon cycle.Global Change Biology,1995,1(1):77- 91.
    [11] Luo Y Q.Terrestrial carbon-cycle feedback to climate warming:experimental evidence.IOP Conference Series:Earth and Environmental Science,2009,6(4):2022.
    [12] Hoover D J,Odigie K O,Swarzenski P W,Barnard P.Sea-level rise and coastal groundwater inundation and shoaling at select sites in California,USA.Journal of Hydrology:Regional Studies,2015,11:234- 249.
    [13] Zhang T T,Zeng S L,Gao Y,Ouyang Z T,Li B,Fang C M,Zhao B.Assessing impact of land uses on land salinization in the Yellow River Delta,China using an integrated and spatial statistical model.Land Use Policy,2011,28(4):857- 866.
    [14] Han G X,Chu X J,Xing Q H,Li D J,Yu J B,Luo Y Q,Wang G M,Mao P L,Rafique R.Effects of episodic flooding on the net ecosystem CO2 exchange of a supratidal wetland in the Yellow River Delta.Journal of Geophysical Research,2015,120(8):1506- 1520.
    [15] West A W,Sparling G P,Speir T W.Microbial activity in gradually dried or rewetted soils as governed by water and substrate availability.Australian Journal of Soil Research,1989,27(4):747- 757.
    [16] Han G X,Sun B Y,Chu X J,Xing Q H,Song W M,Xia J Y.Precipitation events reduce soil respiration in a coastal wetland based on four-year continuous field measurements.Agricultural and Forest Meteorology,2018,256- 257:292- 303.
    [17] Xie W P,Yang J S.Assessment of soil water content in field with antecedent precipitation index and groundwater depth in the Yangtze River Estuary.Journal of Integrative Agriculture,2013,12(4):711- 722.
    [18] Cui B S,Yang Q C,Yang Z F,Zhang K J.Evaluating the ecological performance of wetland restoration in the Yellow River Delta,China.Ecological Engineering,2009,35(7):1090- 1103.
    [19] Fan X,Pedroli B,Liu G,Liu Q,Liu H,Shu L.Soil salinity development in the yellow river delta in relation to groundwater dynamics.Land Degradation & Development,2012,23(2):175- 189.
    [20] Rath K M,Rousk J.Salt effects on the soil microbial decomposer community and their role in organic carbon cycling:a review.Soil Biology and Biochemistry,2015,81:108- 123.
    [21] Hu Y,Wang L,Fu X H,Yan J F,Wu J H,Tsang Y F,Le Y Q,Sun Y.Salinity and nutrient contents of tidal water affects soil respiration and carbon sequestration of high and low tidal flats of Jiuduansha wetlands in different ways.Science of the Total Environment,2016,565:637- 648.
    [22] IPCC.Climate Change 2013:The Physical Science Basis.Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge,UK:Cambridge University Press,2013.
    [23] Zhu B,Cheng W X.Impacts of drying-wetting cycles on rhizosphere respiration and soil organic matter decomposition.Soil Biology and Biochemistry,2013,63:89- 96.
    [24] Morillas L,Durán J,Rodríguez A,Roales J,Gallardo A,Lovett G M,Groffman P M.Nitrogen supply modulates the effect of changes in drying-rewetting frequency on soil C and N cycling and greenhouse gas exchange.Global Change Biology,2015,21(10):3854- 3863.
    [25] 李吉祥.山东黄河三角洲国家级自然保护区.生物学通报,1997,32(5):20- 21.
    [26] Han G X,Luo Y Q,Li D J,Xia J Y,Xing Q H,Yu J B.Ecosystem photosynthesis regulates soil respiration on a diurnal scale with a short-term time lag in a coastal wetland.Soil Biology and Biochemistry,2014,68:85- 94.
    [27] 朱敏,张振华,于君宝,吴立新,韩广轩,杨利琼,邢庆会,谢宝华,毛培利.氮沉降对黄河三角洲芦苇湿地土壤呼吸的影响.植物生态学报,2013,37(6):517- 529.
    [28] 冯忠江,赵欣胜.黄河三角洲芦苇生物量空间变化环境解释.水土保持研究,2008,15(3):170- 174.
    [29] Reinsch S,Koller E,Sowerby A,de Dato G,Estiarte M,Guidolotti G,Kovács-Láng E,Kr?el-Dulay G,Lellei-Kovács E,Larsen K S,Liberati D,Peňuelas J,Ransijn J,Robinson D A,Schmidt I K,Smith A R,Tietema A,Dukes J S,Beier C,Emmett B A.Shrubland primary production and soil respiration diverge along European climate gradient.Scientific Reports,2017,7:43952.
    [30] Moyano F E,Manzoni S,Chenu C.Responses of soil heterotrophic respiration to moisture availability:an exploration of processes and models.Soil Biology and Biochemistry,2013,59:72- 85.
    [31] Wi?ski K,Guo H Y,Craft C B,Pennings S C.Ecosystem functions of tidal fresh,brackish,and salt marshes on the Georgia coast.Estuaries and Coasts,2010,33(1):161- 169.
    [32] 单立山,李毅,段桂芳,张正中,张荣,种培芳.模拟降雨变化对两种荒漠植物幼苗生长及生物量分配的影响.干旱区地理,2016,39(6):1267- 1274.
    [33] 张腊梅,刘新平,赵学勇,张铜会,岳祥飞,云建英.科尔沁固定沙地植被特征对降雨变化的响应.生态学报,2014,34(10):2737- 2745.
    [34] Metcalf H.Life in moving fluids.The physical biology of flow.Steven Vogel.Quarterly Review of Biology,1982,57(3):368.
    [35] Bailey-Serres J,Voesenek L A C J.Flooding stress:acclimations and genetic diversity.Annual Review of Plant Biology,2008,59:313- 339.
    [36] Chapin III F S,Bloom A J,Field C B,Waring R H.Plant responses to multiple environmental factors.BioScience,1987,37(1):49- 57.
    [37] 种培芳,刘晟彤,姬江丽,李毅.模拟CO2浓度升高和降雨量变化对红砂生物量分配及碳氮特征的影响.生态学报,2018,38(6):2065- 2073.
    [38] 吴茜,丁佳,闫慧,张守仁,方腾,马克平.模拟降水变化和土壤施氮对浙江古田山5个树种幼苗生长和生物量的影响.植物生态学报,2011,35(3):256- 267.
    [39] 董丽佳,桑卫国.模拟增温和降水变化对北京东灵山辽东栎种子出苗和幼苗生长的影响.植物生态学报,2012,36(8):819- 830.
    [40] Liu X Z,Wan S Q,Su B,Hui D F,Luo Y Q.Response of soil CO2 efflux to water manipulation in a tallgrass prairie ecosystem.Plant and Soil,2002,240(2):213- 223.
    [41] Huang G,Li Y,Su Y G.Effects of increasing precipitation on soil microbial community composition and soil respiration in a temperate desert,northwestern China.Soil Biology and Biochemistry,2015,83:52- 56.
    [42] 金冠一,赵秀海,康峰峰,汪金松.太岳山油松人工林土壤呼吸对强降雨的响应.生态学报,2013,33(6):1832- 1841.
    [43] 刘涛,张永贤,许振柱,周广胜,侯彦会,林琳.短期增温和增加降水对内蒙古荒漠草原土壤呼吸的影响.植物生态学报,2012,36(10):1043- 1053.
    [44] Yan J X,Chen L F,Li J J,Li H J.Five-Year soil respiration reflected soil quality evolution in different forest and grassland vegetation types in the eastern Loess Plateau of China.CLEAN-Soil Air Water,2013,41(7):680- 689.
    [45] Nielsen U N,Ball B A.Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems.Global Change Biology,2015,21(4):1407- 1421.
    [46] Anderson J M.Carbon dioxide evolution from two temperate,deciduous woodland soils.Journal of Applied Ecology,1973,10(2):361- 378.
    [47] Miller A E,Schimel J P,Meixner T,Sickman J O Melack J M.Episodic rewetting enhances carbon and nitrogen release from chaparral soils.Soil Biology and Biochemistry,2005,37(12):2195- 2204.
    [48] Fierer N,Schimel J P.A Proposed Mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil.Soil Science Society of America Journal,2003,67(3):798- 805.
    [49] 陈亮,孙宝玉,韩广轩,刘子亭,贺文君,王安东,吴立新.降雨量增减对黄河三角洲滨海湿地土壤呼吸和芦苇光合特性的影响.应用生态学报,2017,28(9):2794- 2804.
    [50] Huxman T E,Snyder K A,Tissue D,Leffler A J,Ogle K,Pockman W T,Sandquist D R,Potts D L,Schwinning S.Precipitation pulses and carbon fluxes in semiarid and arid ecosystems.Oecologia,2004,141(2):254- 268.
    [51] McIntyre R E S,Adams M A,Ford D J,Grierson P F.Rewetting and litter addition influence mineralisation and microbial communities in soils from a semi-arid intermittent stream.Soil Biology and Biochemistry,2009,41(1):92- 101.
    [52] Wang Y D,Wang Z L,Wang H M,Guo C C,Bao W K.Rainfall pulse primarily drives litterfall respiration and its contribution to soil respiration in a young exotic pine plantation in subtropical China.Canadian Journal of Forest Research,2012,42(4):657- 666.
    [53] Liu Y C,Liu S R,Wang J X,Zhu X L,Zhang Y D,Liu X J.Variation in soil respiration under the tree canopy in a temperate mixed forest,central China,under different soil water conditions.Ecological Research,2014,29(2):133- 142.
    [54] 董丽媛,武传胜,高建梅,沙丽清.模拟降雨对西双版纳热带次生林和橡胶林土壤呼吸的影响.生态学杂志,2012,31(8):1887- 1892.
    [55] 邓琦,周国逸,刘菊秀,刘世忠,段洪浪,陈小梅,张德强.CO2浓度倍增、高氮沉降和高降雨对南亚热带人工模拟森林生态系统土壤呼吸的影响.植物生态学报,2009,33(6):1023- 1033.
    [56] Harper C W,Blair J M,Fay P A,Knapp A K,Carlisle J D.Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem.Global Change Biology,2005,11(2):322- 334.
    [57] Davidson E A,Ishida F Y,Nepstad D C.Effects of an experimental drought on soil emissions of carbon dioxide,methane,nitrous oxide,and nitric oxide in a moist tropical forest.Global Change Biology,2004,10(5):718- 730.
    [58] 任艳林,杜恩在.降水变化对樟子松人工林土壤呼吸速率及其表观温度敏感性Q10的影响.北京大学学报:自然科学版,2012,48(6):933- 941.
    [59] Cleveland C C,Wieder W R,Reed S C,Townsend A R.Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere.Ecology,2010,91(8):2313- 2323.
    [60] 刘彦春,尚晴,王磊,田野,琚煜熙,甘家兵.气候过渡带锐齿栎林土壤呼吸对降雨改变的响应.生态学报,2016,36(24):8054- 8061.
    [61] Hartmann A A,Niklaus P A.Effects of simulated drought and nitrogen fertilizer on plant productivity and nitrous oxide (N2O) emissions of two pastures.Plant and Soil,2012,361(1/2):411- 426.
    [62] Jassal R S,Black T A,Novak M D,Gaumont-Guay D,Nesic Z.Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas-fir stand.Global Change Biology,2008,14(6):1305- 1318.
    [63] Wang C K,Yang J Y,Zhang Q Z.Soil respiration in six temperate forests in China.Global Change Biology,2006,12(11):2103- 2114.
    [64] Jiang H,Deng Q,Zhou G,Hui D,Zhang D,Liu S,Chu G,Li J.Responses of soil respiration and its temperature/moisture sensitivity to precipitation in three subtropical forests in southern China.Biogeosciences,2013,10(6):3963- 3982.
    [65] 江长胜,郝庆菊,宋长春,胡必琴.垦殖对沼泽湿地土壤呼吸速率的影响.生态学报,2010,30(17):4539- 4548.
    [66] 李娜,牟长城,王彪,张妍,马莉.小兴安岭天然森林沼泽湿地生态系统碳源/汇.生态学报,2017,37(9):2880- 2893.
    [67] 康文星,赵仲辉,田大伦,何介南,邓湘雯.广州市红树林和滩涂湿地生态系统与大气二氧化碳交换.应用生态学报,2008,19(12):2605- 2610.
    [68] Larmola T,Alm J,Juutinen S,Huttunen J T,Martikainen P J,Silvola J.Contribution of vegetated littoral zone to winter fluxes of carbon dioxide and methane from Boreal lakes.Journal of Geophysical Research,2004,109(D19):D19102.
    [69] Bubier J,Crill P,Mosedale A,Frolking S,Linder E.Peatland responses to varying interannual moisture conditions as measured by automatic CO2 chambers.Global Biogeochemical Cycles,2003,17(2):1066.
    [70] Hidding B,Sarneel J M,Bakker E S.Flooding tolerance and horizontal expansion of wetland plants:facilitation by floating mats?Aquatic Botany,2014,113:83- 89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700