2016—2017年武汉市城区大气PM_(2.5)污染特征及来源解析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics and Source Apportionment of PM_(2.5) in Urban Areas of Wuhan During 2016-2017
  • 作者:黄凡 ; 陈楠 ; 周家斌 ; 操文祥 ; 李宽
  • 英文作者:HUANG Fan;CHEN Nan;ZHOU Jiabin;CAO Wenxiang;LI Kuan;School of Resources and Environmental Engineering,Wuhan University of Technology;Hubei Provincial Environmental Monitoring Centre Station;School of Chemistry and Chemical Engineering,Southwest Petroleum University;
  • 关键词:PM_(2.5) ; 污染特征 ; 区域传输 ; 源解析
  • 英文关键词:PM_(2.5);;pollution characteristics;;regional transport;;source apportionment
  • 中文刊名:中国环境监测
  • 英文刊名:Environmental Monitoring in China
  • 机构:武汉理工大学资源与环境工程学院;湖北省环境监测中心站;西南石油大学化学化工学院;
  • 出版日期:2019-01-23 16:11
  • 出版单位:中国环境监测
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金资助项目(41173092);; 武汉理工大学研究生优秀学位论文培育项目(2016-YS-058)
  • 语种:中文;
  • 页:22-30
  • 页数:9
  • CN:11-2861/X
  • ISSN:1002-6002
  • 分类号:X513
摘要
利用2016年1月至2017年9月湖北省环境监测中心站大气复合污染自动监测站的在线监测数据,对武汉市城区PM_(2.5)的污染特征及主要来源进行解析。结果表明,武汉市城区PM_(2.5)质量浓度呈现出明显的季节差异,季节变化规律为冬季>春季>秋季>夏季。水溶性离子的主要成分SO■、NO~-_3和NH~+_4占总离子质量浓度的82.0%。PM_(2.5)中阴离子相对阳离子较为亏损,颗粒整体呈碱性。夏季气态污染物的氧化程度较高且SO_2较NO_2氧化程度高。后向轨迹分析结果表明,区域传输是武汉市PM_(2.5)的一个重要来源,在4个典型重污染阶段,武汉市分别受到局地、东北、西北及西南方向气团传输的影响。PMF模型解析出武汉市PM_(2.5)五大主要来源及平均贡献率:扬尘22.0%、机动车排放27.7%、二次气溶胶21.6%、重油燃烧14.9%和生物质燃烧13.8%。
        Online monitoring data collected by Hubei Provincial Environmental Monitoring Centre from January 2016 to September 2017 were utilized and analyzed using multiple methods to better understand the characteristics and sources of fine particles(PM_(2.5)) in urban area of Wuhan. The results showed that PM_(2.5) concentrations had an obvious seasonal variation with the highest concentration occurring in winter followed by spring, autumn and summer. Sulfate, nitrate and ammonium were found to be the main components of PM_(2.5), accounting for 82% of the total concentration of water soluble ions. Water soluble anions levels in PM_(2.5) were less abundant than the corresponding cations, indicating the alkaline characteristic of ambient aerosol in Wuhan. It is worth noting that gaseous pollutants exhibited high degree of oxidation in summer. Among them, higher degree of oxidation was observed in SO_2 than that of NO_2. Besides, backward trajectory analysis demonstrated that regional transported air masses could be a crucial contributor to PM_(2.5) pollution in Wuhan. During four typical heavy pollution episodes, the concentrations of PM_(2.5) in Wuhan were significantly affected by air masses originated from local, northeast, northwest as well as southwest, respectively. The positive matrix factorization(PMF) model identified five sources of PM_(2.5), i.e., fugitive dust, vehicle emissions, secondary aerosol, heavy oil combustion, and biomass burning, and the percentage contribution of above sources to PM_(2.5) mass was 22.0%, 27.7%, 21.6%, 14.9% and 13.8%, respectively.
引文
[1] ARGYROPOULOS G,KUNGOLOS A,SAMARA C,et al.Source Apportionment of PM10 and PM2.5 in Major Urban Greek Agglomerations Using a Hybrid Source-Receptor Modeling Process[J].Science of the Total Environment,2017,601/602:906.
    [2] SULONG N A,LATIF M T,KHAN M F,et al.Source Apportionment and Health Risk Assessment Among Specific Age Groups During Haze and Non-Haze Episodes in Kuala Lumpur,Malaysia[J].Science of the Total Environment,2017,601/602:556.
    [3] LIU J,WU D,FAN S,et al.A One-Year,On-Line,Multi-Site Observational Study on Water-Soluble Inorganic Ions in PM2.5 over the Pearl River Delta region,China[J].Science of the Total Environment,2017,601/602:1 720-1 732.
    [4] XU L,BATTERMAN S,CHEN F.Spatio Temporal Characteristics of PM2.5 and PM10 at Urban and Corresponding Background Sites in 23 Cities in China[J].Science of the Total Environment,2017,599/600:2 074-2 084.
    [5] 于海斌,薛荔栋,郑晓燕,等.APEC期间京津冀及周边地区PM2.5中碳组分变化特征及来源[J].中国环境监测,2015,31(2):48-52.YU Haibin,XUE Lidong,ZHENG Xiaoyan,et al.Characterization and Sources of Carbonaceous Components in PM2.5 During the APEC in Beijing-Tianjin-Hebei Region[J].Environmental Monitoring in China,2015,31(2):48-52.
    [6] CHEN P,WANG T,DONG M,et al.Characterization of Major Natural and Anthropogenic Source Profiles for Size-Fractionated PM in Yangtze River Delta[J].Science of the Total Environment,2017,598:135-145.
    [7] LIU Y,HONG Y,FAN Q,et al.Source Receptor Relationships for PM2.5 During Typical Pollution Episodes in the Pearl River Delta City Cluster,China[J].Science of the Total Environment,2017,596/597:194-206.
    [8] 顾芳婷,胡敏,王渝,等.北京2009—2010年冬、春季PM2.5污染特征[J].中国环境科学,2016,36(9):2 578-2 584.GU Fangting,HU Min,WANG Yu,et al.Characteristics of PM2.5 Pollution in Winter and Spring of Beijing during 2009-2010[J].China Environmental Science,2016,36(9):2 578-2 584.
    [9] 孙峰,张大伟,孙瑞雯,等.北京地区冬季典型PM2.5重污染案例分析[J].中国环境监测,2014,30(6):1-12.SUN Feng,ZHANG Dawei,SUN Ruiwen,et al.Typical Heavy Pollution Episode Analysis on PM2.5 in Winter of Beijing[J].Environmental Monitoring in China,2014,30(6):1-12.
    [10] 丁萌萌,周健楠,刘保献,等.2015年北京城区大气PM2.5中NH+4、NO-3、SO及前体气体的污染特征[J].环境科学,2017,38(4):1 307-1 316.DING Mengmeng,ZHOU Jiannan,LIU Baoxian,et al.Pollution Characteristics of NH+4,NO-3,SO in PM2.5 and Their Precursor Gases During 2015 in an Urban Area of Beijing[J].Environmental Science,2017,38(4):1 307-1 316.
    [11] 王嫣然,张学霞,赵静瑶,等.2013—2014年北京地区PM2.5时空分布规律及其与植被覆盖度关系的研究[J].生态环境学报,2016,25(1):103-111.WANG Yanran,ZHANG Xuexia,ZHAO Jingyao,et al.Temporal and Spatial Distribution of PM2.5 and Its Relationship with Vegetation Coverage in Beijing During the Period of 2013-2014[J].Ecology and Environmental Sciences,2016,25(1):103-111.
    [12] 邱婷,周家斌,肖经汗,等.武汉市秋、冬季大气PM2.5中水溶性离子污染特征及来源分析[J].环境污染与防治,2015,37(4):17-20.QIU Ting,ZHOU Jiabin,XIAO Jinghan,et al.Characteristics and Sources Apportionment of Water-Soluble Ions in PM2.5 in Autumn and Winter of Wuhan[J].Environmental Pollution & Control,2015,37(4):17-20.
    [13] GAO X,YANG L,CHENG S,et al.Semi-Continuous Measurement of Water-Soluble Ions in PM2.5 in Jinan,China:Temporal Variations and Source Apportionments[J].Atmospheric Environment,2011,45(33):6 048-6 056.
    [14] LIN J J.Characterization of Water-Soluble Ion Species in Urban Ambient Particles[J].Environment International,2002,28(1):55-61.
    [15] YAO X,CHAN C K,FANG M,et al.The Water-Soluble Ionic Composition of PM2.5 in Shanghai and Beijing,China[J].Atmospheric Environment,2002,36(26):4 223-4 234.
    [16] 沈建东,焦荔,何曦,等.杭州城区春节PM2.5中水溶性离子在线观测[J].中国环境监测,2014,30(2):151-157.SHEN Jiandong,JIAO Li,HE Xi,et al.Online Measurement of the Water-Soluble Ions in PM2.5 During Spring Festival in Hangzhou[J].Environmental Monitoring in China,2014,30(2):151-157.
    [17] LV W,WANG Y,QUEROL X,et al.Geochemical and Statistical Analysis of Trace Metals in Atmospheric Particulates in Wuhan,Central China[J].Environmental Geology,2006,51(1):121-132.
    [18] 崔井龙,张志红,夏娜,等.太原市某城区四季大气PM2.5中重金属污染特征分析[J].环境科学学报,2016,36(5):1 566-1 572.CUI Jinglong,ZHANG Zhihong,XIA Na,et al.Pollution Characteristics of Heavy Metals in PM2.5 During Four Seasons in Taiyuan City[J].Acta Scientiae Circumstantiae,2016,36(5):1 566-1 572.
    [19] HARRISON R M,TILLING R,ROMERO M S C,et al.A Study of Trace Metals and Polycyclic Aromatic Hydrocarbons in the Roadside Environment[J].Atmospheric Environment,2003,37(17):2 391-2 402.
    [20] ZHANG Y,OBRIST D,ZIELINSKA B,et al.Particulate Emissions from Different Types of Biomass Burning[J].Atmospheric Environment,2013,72(2):27-35.
    [21] DUAN F,HE K,MA Y,et al.Characteristics of Carbonaceous Aerosols in Beijing,China[J].Chemosphere,2005,60(3):355.
    [22] 王苏蓉,喻义勇,王勤耕,等.基于PMF模式的南京市大气细颗粒物源解析[J].中国环境科学,2015,35(12):3 535-3 542.WANG Surong,YU Yiyong,WANG Qingeng,et al.Source Apportionment of PM2.5 in Nanjing by PMF[J].China Environmental Science,2015,35(12):3 535-3 542.
    [23] PENTTI PAATERO,UNTO TAPPER.Analysis of Different Modes of Factor Analysis as Least Squares Fit Problems[J].Chemo Metrics and Intelligent Laboratory Systems,1993,18(2):183-194.
    [24] 张智胜,陶俊,谢绍东,等.成都城区PM2.5季节污染特征及来源解析[J].环境科学学报,2013,33(11):2 947-2 952.ZHANG Zhisheng,TAO Jun,XIE Shaodong,et al.Seasonal Variations and Source Apportionment of PM2.5 at Urban Area of Chengdu[J].Acta Scientiae Circumstantiae,2013,33(11):2 947-2 952.
    [25] CHUEINTA W,HOPKE P K,PAATERO P.Investigation of Sources of Atmospheric Aerosol at Urban and Suburban Residential Areas in Thailand by Positive Matrix Factorization[J].Atmospheric Environment,2000,34(20):3 319-3 329.
    [26] YU L.Characterization and Source Apportionment of PM2.5 in an Urban Environment in Beijing[J].Aerosol & Air Quality Research,2013,13(2):574-583.
    [27] GRIGORATOS T,MARTINI G.Brake Wear Particle Emissions:A Review[J].Environmental Science & Pollution Research International,2015,22(4):2 491-2 504.
    [28] SONG S,YE W,JIANG J,et al.Chemical Characteristics of Size-Resolved PM2.5 at a Roadside Environment in Beijing,China[J].Environmental Pollution,2012,161:215-221.
    [29] LIN Y C,TSAI C J,WU Y C,et al.Characteristics of Trace Metals in Traffic-Derived Particles in Hsuehshan Tunnel,Taiwan:Size Distribution,Fingerprinting Metal Ratio and Emission Factor[J].Atmospheric Chemistry & Physics Discussions,2015,14(9):4 117-4 130.
    [30] GREGORIS E,BARBARO E,MORABITO E,et al.Impact of Maritime Traffic on Polycyclic Aromatic Hydrocarbons,Metals and Particulate Matter in Venice Air[J].Environmental Science & Pollution Research International,2016,23(7):1-9.
    [31] LYU X P,CHEN N,GUO H,et al.Chemical Characteristics and Causes of Airborne Particulate Pollution in Warm Seasons in Wuhan,Central China[J].Atmospheric Chemistry & Physics,2016,16(16):1-35.
    [32] ROY A,CHATTERJEE A,TIWARI S,et al.Precipitation Chemistry over Urban,Rural and High Altitude Himalayan Stations in Eastern India[J].Atmospheric Research,2016,181:44-53.
    [33] TAO J,ZHANG L,ENGLING G,et al.Chemical Composition of PM2.5 in an Urban Environment in Chengdu,China:Importance of Springtime Dust Storms and Biomass Burning[J].Atmospheric Research,2013,122(3):270-283.
    [34] ALMEIDA S M,PIO C A,FREITAS M C,et al.Approaching PM2.5 and PM10 Source Apportionment by Mass Balance Analysis,Principal Component Analysis and Particle Size Distribution[J].Science of the Total Environment,2006,368(2):663-674.