用户名: 密码: 验证码:
基于SAS PROC MIXED的印楝品种印楝素质量分数稳定
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Stability of azadirachtin contents in neem cultivars based on SAS PROC MIXED
  • 作者:彭俊杰 ; 吴疆翀 ; 彭兴民 ; 李昆 ; 王有琼 ; 郑益兴 ; 张燕平
  • 英文作者:PENG Junjie;WU Jiangchong;PENG Xingmin;LI Kun;WANG Youqiong;ZHENG Yixing;ZHANG Yanping;Research Institute of Resource Insects, Chinese Academy of Forestry;Graduate School of Business, Assumption University;
  • 关键词:林木育种学 ; 印楝 ; 品种 ; 印楝素 ; 稳定 ; 模型 ; 机制
  • 英文关键词:forest tree breeding;;neem(Azadirachta indica);;cultivars;;azadirachtin;;stability;;models;;mechanisms
  • 中文刊名:浙江农林大学学报
  • 英文刊名:Journal of Zhejiang A & F University
  • 机构:中国林业科学研究院资源昆虫研究所;易三仓大学商学院;
  • 出版日期:2019-08-02
  • 出版单位:浙江农林大学学报
  • 年:2019
  • 期:04
  • 基金:“十三五”国家重点研发计划项目(2017YFC0505101);; 国家自然科学基金资助项目(31500515,31770669)
  • 语种:中文;
  • 页:88-97
  • 页数:10
  • CN:33-1370/S
  • ISSN:2095-0756
  • 分类号:S792.33
摘要
基于SAS PROC MIXED的印楝Azadirachta indica品种印楝素质量分数的稳定性,探索建立高效、科学的印楝品种印楝素质量分数稳定性的分析方法,探究稳定性类型和机制。在元阳、元江、元谋, 7个印楝品种、单株小区、三重复、完全随机区组、多系受粉,运用HPLC技术分析种子印楝素组分质量分数,基于SAS软件PROC MIXED程序的Stability Variance, Finlay-Wilkinson, Eberhart-Russell, AMMI-1和Environmental Variance 5种模型,进行品种种子印楝素质量分数稳定性参数估计、品种效应差异性检验和稳定性参数寻优,用Akaike信息量准则(cAIC)评价和选择最佳模型,推断稳定性类型和机制。结果表明:5种模型中Finlay-Wilkinson和AMMI-1模型的品种印楝素A和印楝素B质量分数的cAIC值最小,均分别为-17.3和-5.8; 7个品种的印楝素A和印楝素B质量分数的稳定性参数大小基本一致,稳定性排序分别为Wx0423>Wx0416>Dhg0507>平均木(ck)>At0515>Ld0505>Ww0401和平均木(ck)>Wx0416>Wx0423>Dhg0507>Ld0505>Ww0401>At0515;品种印楝素A和印楝素B质量分数的品种效应差异显著性分别为极显著(P<0.01)和显著(P<0.05),证明品种印楝素A和印楝素B的稳定性随环境条件的变化会发生可预测的改变即动态稳定性,其遗传机制受遗传控制。Finlay-Wilkinson和AMMI-1适于印楝品种种子印楝素质量分数稳定性分析,而Stability Variance, Eberhart-Russell, Environmental Variance模型并不适用;品种印楝素A和印楝素B质量分数的稳定性均为动态稳定性,稳定性绝大部分依赖于个体缓冲性。多种模型分析基础上的稳定性综合评估更高效更科学。
        The analysis method, type, and mec hanism of the stability of azadirachtin content in neem(Azadirachta indica) cultivars were discussed in order to explores the methods to establish the stability analysis of the quality and quantity fraction of neem cultivars, and probes into the stability types and mechanisms. Based on data obtained from the mass fraction of azadirachtin in seven neem clonal seeds, the effects of five analytical models(Stability Variance, Finlay-Wilkinson, Eberhart-Russell, AMMI-1, and Environmental Variance) from the stability assessment of azadirachtin components were compared using a SAS PROC MIXED procedure. An Akaike Information Criterion(cAIC) of maximum likelihood value was also conducted to evaluate and select the optimal model and to deduce stability types and mechanisms. Seeds were collected from 6 supe rior cultivars(Ld0505, At0515, Ww0401, Dhg0507, Wx0423, Wx0416)of pesticide type neem and average neem(ck), and the experiment was designed with random complete block design, with 7 cultivars being one plot and 3 repetitions(plants spacing 4 m × 4 m), and then azadirachtin concentrations in seed kernels were tested. The results showed that the cAICvalues of azadirachtin A and azadirachtin B of Finlay-Wilkinson and AMMI-1 models were the minimum, respectively-17.3 and-5.8. The stability parameters of the mass fraction of azadirachtin A and azadirachtin B were basically the same, and the stability sequencing was Wx0423>Wx0416>Dhg507>average wood(ck) >At0515 >Ld0505 >Ww0401 and average wood(ck) >Wx0416 >Wx0423 >Dhg0507 >Ld0505 >Ww0401 >At0515. The significant difference in effect between azadirachtin A and azadirachtin B was extremely significant(P<0.01) and significant(P<0.05), respectively. It was proved that the stability of azadirachtin A and azadirachtin B would change predictably with the change of environmental conditions,namely dynamic stability, and their genetic mechanism was controlled by heredity. Finlay-Wilkinson and AMMI-1 are suitable for the Stability analysis of the quality quantity fraction of neem seeds, while the Stability Variance, Eberhart-Russell and Environmental Variance models are not applicable. The stability of azadirachtin A and azadirachtin B was dynamic, and the stability was mostly dependent on individual buffering. The comprehensive evaluation of stability based on multi-model analysis is more efficient.
引文
[1] TOMILIN C D S. The Pesticide Manual[M]. 12th Ed. Berkshire:British Crop Protection Council, 2000.
    [2]彭兴民,吴疆翀,郑益兴,等.印楝属(Azadirachta A. Juss.)植物分类及分布的研究现状[J].植物遗传资源学报, 2012, 13(4):583-588.PENG Xingmin, WU Jiangchong, ZHENG Yixing, et al. Classification and distribution of Azadirachta:a review[J]. J Plant Genet Resour, 2012, 13(4):583-588.
    [3]徐汉虹,赖多,张志祥.植物源农药印楝素的研究与应用[J].华南农业大学学报, 2017, 38(4):1-11.XU Hanhong, LAI Duo, ZHANG Zhixiang. Research and application of botanical pesticide azadirachtin[J]. J South China Agric Univ, 2017, 38(4):1-11.
    [4]彭兴民,吴疆翀,郑益兴,等.云南引种印楝实生种群的表型变异[J].植物生态学报, 2012, 36(6):560-571.PENG Xingmin, WU Jiangchong, ZHENG Yixing, et al. Phenotypic variation in cultivated populations of Azadirachta indica in Yunnan, China[J]. Chin J Plant Ecol, 2012, 36(6):560-571.
    [5]彭兴民,吴疆翀,郑益兴,等.云南引种印楝实生栽培种群表型的地理变异[J].林业科学研究, 2013, 26(4):399-405.PENG Xingmin, WU Jiangchong, ZHENG Yixing, et al. Geographic variation of morphological characters among cultivated neem(Azadirachta indica)populations in Yunnan, China[J]. For Res, 2013, 26(4):399-405.
    [6] ZHENG Yixing, WU Jiangchong, WANG Youqiong, et al. Seed yield and azadirachtin content of Azadirachta indica in four ecosystems of southwest China[J]. Ind Crop Prod. 2018, 122(1):23-37. doi:10.1016/j.indcrop.2018.05.040.
    [7] ALLARD R W, BRADSHAW A D. Implications of genotype-environmental interactions in applied plant breeding[J].Crop Sci, 1964, 4(5):503-508.
    [8]王贤智.大豆产量相关性状的遗传与稳定性分析及QTL定位研究[D].北京:中国农业科学院, 2008.WANG Xianzhi. Inheritance, Stability Analysis and QTL Mapping of Yield Related Traits in Soybean[D]. Beijing:Chinese Academy of Agricultural Sciences, 2008.
    [9]胡希远,尤海磊,宋喜芳,等.作物品种稳定性分析不同模型的比较[J].麦类作物学报, 2009, 29(1):110-117.HU Xiyuan, YOU Hailei, SONG Xifang, et al. Comparison of different models for crop stability analysis[J]. J Tritic Crop, 2009, 29(1):110-117.
    [10]彭兴民,吴疆翀,程金焕,等.印楝农药原料林优树选择方法与标准[J].福建林学院学报, 2010, 30(3):265-269.PENG Xingmin, WU Jiangchong, CHEN Jinhuan, et al. A study on method and standard of Azadirachta indica superior tree selection for pesticide raw material production plantations[J]. J Fujian Coll For, 2010, 30(3):265-269.
    [11]彭兴民,吴疆翀,王有琼,等.药用印楝表型选择的因子分析及综合评价[J].林业科学研究, 2015, 28(4):464-472.PENG Xingmin, WU Jiangchong, WANG Youqiong, et al. Factor analysis and comprehensive assessment of phenotypic selection of officinal neem superior trees[J]. For Res, 2015, 28(4):464-472.
    [12]彭兴民,吴疆翀,王有琼,等.印楝种子品质性状的遗传多样性及稳定性分析[J].林业科学研究, 2015, 28(6):767-774.PENG Xingmin, WU Jiangchong, WANG Youqiong, et al. Genetic diversity and stability of Azadirachta indica seed quality characters[J]. For Res, 2015, 28(6):767-774.
    [13]彭兴民,吴疆翀,郑益兴,等.印楝无性系当代种子农药品质性状的遗传变异及农药型印楝优株评价[J].林业科学研究, 2017, 30(6):921-928.PENG Xingmin, WU Jiangchong, ZHENG Yixing, et al. Genetic variation of azadirachtin quality in seeds of neem clones and evaluation of superior neem trees for pesticides[J]. For Res, 2017, 30(6):921-928.
    [14]宗乾收,林军,武永昆,等.印楝种仁中印楝素含量的快速液相色谱分析[J].农药, 2003, 42(4):23-24.ZONG Qianshou, LIN Jun, WU Yongkun, et al. Quantitative analysis of azadirachtin content of neem seeds by HPLC[J]. Pesticides, 2003, 42(4):23-24.
    [15]胡希远,尤海磊,任长宏,等.基于协方差阵结构优选的作物品种区域试验分析[J].作物学报, 2009, 35(11):1981-1989.HU Xiyuan, YOU Hailei, REN Changhong, et al. Analysis of crop variety regional trials based on selection of covariance structures[J]. Acta Agron Sin, 2009, 35(11):1981-1989.
    [16]刘录祥,赵锁劳.作物品种的稳定性和适应性育种[J].陕西农业科学, 1992(6):43-46.LIU Luxiang, ZHAO Suolao. Stability and adaptability breeding of crop varieties[J]. Shaanxi J Agric Sci, 1992(6):43-46.
    [17]刘大群,王恒立.品种稳定性评价方法的比较和分析[J].作物学报, 1988, 14(4):290-295.LIU Daqun, WANG Hengli. A comparison and analysis of variety stability methods[J]. Acta Agron Sin, 1988, 14(4):290-295.
    [18]吴元奇,潘光堂,荣廷昭.作物稳定性研究进展[J].四川农业大学学报, 2005, 23(4):482-489.WU Yuanqi, PAN Guangtang, RONG Tingzhao. Study progress in chop stability[J]. J Sichuan Agric Univ, 2005, 23(4):482-489.
    [19]任长宏,格桑曲珍,胡希远.经验性最佳线性无偏预测(eBLUP)在油菜区域试验品种评价的效果[J].作物学报, 2017, 43(3):371-377.REN Changhong, Gesangquzhen, HU Xiyuan. Performance of eBLUP in variety evaluation of regional rape trials in China[J]. Acta Agron Sin, 2017, 43(3):371-377.
    [20] KURAVADI N A, YENAGI V, RANGIAH K, et al. Comprehensive analyses of genomes, transcriptomes and metabolites of neem tree[J]. Peer J, 2015, 3(1):e1066. doi:10.7717/peerj.1066.
    [21]龚强.基因组变异的深度挖掘[D].北京:中国科学院大学, 2013GONG Qiang. Intensive Detection of Genomic Variants[D]. Beijing:University of Chinese Academy of Sciences,2013.
    [22]刘乐乐,杜宁,裴翠萍,等.植物群体表观遗传学研究进展[J].生态学杂志, 2017, 36(9):2615-2622.LIU Lele, DU Ning, PEI Cuiping, et al. Advances in population epigenetics of plant[J]. Chin J Ecol, 2017, 36(9):2615-2622.
    [23] KRISHNAN N M, PATTNAIKL S, JAIN P, et al. A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica[J]. BMC Genomics, 2012, 13(464):1471-2164.
    [24] PANDREKA A, DANDEKAR D S, HALDAR S, et al. Triterpenoid profiling and functional characterization of the initial genes involved in isoprenoid biosynthesis in neem(Azadirachta indica)[J]. BMC PIant Biol, 2015, 15(1):214. doi:10.1186/s12870-015-0593-3.
    [25] BHAMBHANI S, LAKHWANI D, GUPTA P, et al. Transcriptome and metabolite analyses in Azadirachta indica:identification of genes involved in biosynthesis of bioactive triterpenoids[J]. Sci Rep, 2017, 7(1):5043. doi:10.1038/s41598-017-05291-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700