内蒙古草原煤矿区周边土壤汞分布特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution Characteristics of Soil Mercury around Inner Mongolia Steppe Coal Mine Area
  • 作者:王道涵 ; 王营军 ; 赵晓亮
  • 英文作者:WANG Daohan;WANG Yingjun;ZHAO Xiaoliang;College of Environmental Science and Engineering & Liaoning Engineering and Technology University;
  • 关键词:草原 ; 土壤 ; ; 评价
  • 英文关键词:grassland;;soil;;mercury;;evaluation
  • 中文刊名:地球与环境
  • 英文刊名:Earth and Environment
  • 机构:辽宁工程技术大学环境科学与工程学院;
  • 出版日期:2019-01-30 16:11
  • 出版单位:地球与环境
  • 年:2019
  • 期:02
  • 基金:辽宁省自然科学基金重点项目(20170540425)
  • 语种:中文;
  • 页:61-67
  • 页数:7
  • CN:52-1139/P
  • ISSN:1672-9250
  • 分类号:X53
摘要
为探究汞(Hg)对内蒙古地区草原土壤的影响,于2015年5月~2016年5月对呼伦贝尔(HB)、鄂尔多斯(ER)、霍林郭勒(HL)和锡林浩特(XL)电厂周边土壤Hg分布进行研究。设计采样路线,分别位于四个地区的东、西、南、北,每条路线上每隔5km布点,对土壤样品进行采集,并用原子荧光光度计(普析通用PF-7原子荧光光度计)对土壤中Hg含量进行测定。实验结果表明:四个地区土壤Hg含量的平均值均高于Hg在土壤中的背景值,受人为活动干扰明显;空间积累特征为:土壤中Hg的超背景值倍率由污染源的中心向四周逐渐递减,但各方向上的递减速率差异很大,各方向上的传输距离也有一定差异,其空间分布表现出明显的方向性;利用单因子指数法(P)和潜在生态危害指数法(Ei)对四个地区汞的污染程度及风险评价进行分析发现,PHB处于无污染状态,PER属于轻度污染,PHL和PXL属于中度污染; HB和ER地区分别属于强生态风险程度(Ⅲ级)、很强生态风险程度(Ⅳ级)、HL和XL地区属于极强生态风险程度(Ⅴ级)。
        The distributions of soil mercury around generating stations of hulunbuir( HB),ordos( ER),Holly gooler( HL) and Xilinhot( XL) from May 2015 to May 2016 were investigated to explore the influence of mercury( Hg) on grassland soils in Inner Mongolia.A sampling route in north,south,east and west regions of these generating plants was designed and soil samples were collected with an interval of 5 km on the route. The Hg contents of soil samples were determined by an atomic fluorescence photometer( PF-7 Atomic fluorescence photometer). The results showed that the average content of Hg in soil samples is higher than the background soil Hg content,indicating the obvious disturbance of human activities in the four sampling areas. The spatial distribution could be characterized as follows,the elevated levels of Hg in soils gradually decrease from the center of the pollution source to the periphery,but the deceleration rates of various directions are very different,and the transmission distances of various directions are also different,in other words,the spatial distribution shows obvious directional characteristics. The pollution degree and the risk evaluation of mercury in the four areas were estimated by single factor index method( P) and the potential ecological hazard index method( Ei). The results showed that PHLand PXLwere moderately polluted,regions of HB and ER belonged to the ecological risk degree( III level) and the strong ecological risk degree( IV level),respectively,and HL and XL areas belonged to the strong ecological risk degree( V level).
引文
[1] Liu Z Z,Tang H,Wu J,et al. Research progress on soil mercury pollution and its restoration technology[J]. Environmental Engineering,2013,31(5):80-84.
    [2] Zheng C,Zhang J,Zhao Y C,et al. Emission and control of mercury from coal combustion[M].Beijing:Beijing Science Press,2010:1-20.
    [3] Wen H,Weei G H,Wu Y J,et al. Effects of mercury on soil enzyme activity[J].China Environmental Science,2001,21(3):279-283.
    [4] Yang Z H,Zhang S J,Li Y P,et al. Remediation of heavy metal contamination in calcareous soil by washing with reagents:A column washing.Energy Environmental Sciences,2012,16:778-785.
    [5] Liu X H,Gao Y T,Sardar K,et al. Accumulation of Pb,Cu,and Zn in native plants growing on contaminated sites and their potential accumulation capacity in Heqing Yunnan[J]. Journal of Environmental Sciences.2008,20(12):1469-1474.
    [6] Li P,Wang X X,Zhang T L,et al. Effects of several amendments on rice growth and uptake of copper and cadmium from a contaminated soil[J].Journal of Environmental Sciences,2008,20(4):449-455.
    [7] Pedro T,Jaume B,Bernardo S,et al. Concentrations of heavy metals in urban soils of Talcahuano(Chile):a preliminary study[J].Environment Monitoring and Assessment,2008,140:91–98.
    [8] Bhuiyan M,Parvez L,Islam M A,et al. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh[J].Journal of Hazardous Materials,2010,173:384-392.
    [9] Kocman D. Mercury fractionation in contaminated soils from the Idrija mercury mine[J].Journal of Environmental Monitoring,2004. 6(8):696-703.
    [10]陈宁.腐殖酸对汞在土壤中吸附—解吸及非生物甲基化影响研究[D].安徽:安徽农业大学,2013.
    [11]颜雪.汞在土壤中的吸附-解吸及其非生物甲基化[D].安徽:安徽农业大学,2012.
    [12]陈艳,田超,司友斌,等.无机汞和甲基汞在土壤中的吸附-解吸特性研究[J].农业环境科学学报,2012,32(6):1159-1165.
    [13]牟树森,唐书源.酸沉降地区土壤-蔬菜系统中汞污染问题[J].农业环境科学学报,1992,11(2):57–60.
    [14]中国环境监测总站.中国土壤元素背景值[M].北京:中国环境出版社,1990.
    [15]盛蒂,朱兰保,戚晓明,等.蚌埠市区土壤重金属积累特征及生态风险评价[J].土壤通报,2015,46(3):715-720.
    [16]周妍姿,王钧,曾辉,等.内蒙古土壤重金属的空间异质性及污染特征[J].生态环境学报,2015,24(8):1381-1387.
    [17]段海静,蔡晓强,阮心玲,等.开封市公园灰尘重金属含量及潜在生态风险[J].地球与环境,2016,44(1):89-95.
    [18]陈毛华,刘明广,郭斌,等.阜阳市城郊菜地重金属污染调查与评价[J].地球与环境,2017,45(3):322-328.
    [19]郭伟,孙文惠,赵仁鑫,等.呼和浩特市不同功能区土壤重金属污染特征及评价[J].环境科学,2013,34(4):1561-1567.
    [20]徐争启,倪军师,庹先国,等.潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术,2008,32(2):112-115.