用户名: 密码: 验证码:
西北内陆盐湖盆地土壤重金属Cr、Hg、As空间分布特征及潜在生态风险评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial distribution characteristics and potential ecological risk assessment of Cr, Hg, and As in soils of the Salt Lake Basin in northwest China
  • 作者:高瑞忠 ; 张阿龙 ; 张生 ; 贾德彬 ; 杜丹丹 ; 秦子元 ; 王喜喜
  • 英文作者:GAO Ruizhong;ZHANG Along;ZHANG Sheng;JIA Debin;DU DANDan;QIN Ziyuan;WANG Xixi;Inner Mongolia Agricultural University Institute of Water Conservancy and Civil Engineering;Inner Mongolia Key Laboratory of Water Resources Protection and Utilization;Old Dominion University;
  • 关键词:土壤重金属 ; 空间分布 ; 多元统计 ; 潜在生态风险评价 ; 盐湖盆地
  • 英文关键词:soil heavy metals;;spatial distribution;;multivariate statistics;;potential ecological risk assessment;;salt lake basin
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:内蒙古农业大学水利与土木建筑工程学院;内蒙古水资源保护与利用重点实验室;美国欧道明大学;
  • 出版日期:2019-01-10 09:14
  • 出版单位:生态学报
  • 年:2019
  • 期:07
  • 基金:国家自然科学基金(51469019)
  • 语种:中文;
  • 页:270-282
  • 页数:13
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:X53;X826
摘要
选取位于西北内陆的吉兰泰盐湖盆地为研究对象,按照表层(0—10 cm)、50 cm层(50—60 cm)和100 cm层(100—110 cm)分层土壤取样,系统采集了120个样品,测定了重金属Cr、Hg和As,以及主要化学成分的含量,以地统计学插值绘图揭示了吉兰泰盐湖盆地Cr、Hg和As的空间分布特征,以单因子指数法、内梅罗指数法和潜在生态风险指数法评价解析了盐湖盆地Cr、Hg和As的污染及生态风险状况,以统计相关检验和主成分分析法进行了盐湖盆地Cr、Hg和As的源分析。结果表明:1)盐湖盆地土壤中Cr、Hg、As总体具有相似的空间分布特征,Cr在西北部的巴音乌拉山、乌兰布和沙漠地区和西南台地地区的含量较高,Hg仅在西南低山台地地区、以及东北局部区域的含量较高,As在盐湖附近、东南贺兰山、巴音乌拉山西北部和乌兰布和沙漠地区含量较高;2)基于内蒙古土壤质量背景值,土壤污染分布次序为As>Hg>Cr,其中Hg和As中度污染以上累计比重达到为45%,而Cr仅有7.5%的轻微污染;研究区无清洁土壤,仅有尚清洁土壤占2.5%,开始受到污染和中度污染以上土壤比重为50%和42.5%;土壤潜在风险次序为Hg>As>Cr,Hg整体处于很强生态风险水平;轻微生态风险占到40%,由中度、强度到极强在20%以内,很强生态风险程度略超20%,大部地区处于轻微生态风险状况;3)基于国家土壤环境质量二级标准值,土壤中Cr、Hg、As无论是单因子污染、综合污染,还是潜在生态风险指数均未出现超标区域,不存在Cr、Hg、As污染或潜在生态风险,但相对内蒙古整个地区来说,盐湖盆地Cr、Hg、As含量较高;4)研究区土壤中Cr主要来源于土壤母质形成过程中的自然来源,Hg和As主要来源于工业排放、交通污染源等人类活动,均受到人类活动和自然环境变化的综合影响。
        The Jilantai Salt Lake Basin in the northwest inland area of China was selected as the study area. A total 120 soil samples from soil surface, 50 and 100 cm depth were collected to test for Cr, Hg, As, and the concentration of the main chemicals. The spatial distribution characteristics of Cr, Hg, and As were identified through geo-statistical interpolation. The pollution degree, pollution distribution, and ecological risk of Cr, Hg, and As were analyzed by a single factor index method, Nemero index method, and a potential ecological risk index. A source analysis of Cr, Hg, and As was performed by a statistical correlation test and a principal component analysis. There were similar spatial distribution characteristics for the concentrations of Cr, Hg, and As in the soils of the Salt Lake Basin. Cr was higher in the Bayinwula mountain area, the Wulanbuhe desert area, and the hilly area of the southwest study area; Hg was higher only in the northeast local area and the hilly area of the southwest study area; and As was higher in near the lake, the Helan mountain area, the Bayinwula mountain area, and the Wulanbuhe desert area than in the other areas. Based on the background value of soil quality for inner Mongolia, the order of soil pollution is As > Hg > Cr, in which Hg and As was at a moderate level of pollution above the cumulative proportion of 45%, but Cr was only at a slight level of pollution at 7.5%. There was no clean soil in the study area; cleaner soil only accounted for 2.5%. The beginning stages of contamination to moderate pollution in the soil are above 50% and 42.5%, respectively. The soil risk order is Hg > As > Cr. Broadly for the study area, Hg was at a very strong ecological risk level. A slight ecological risk accounted for 40%. Moderate to strong risk were within 20%. Most areas were in a slight ecological risk situation. Based on the Chinese national standard value of soil environmental quality and the assessment results from the single factor pollution, comprehensive pollution, and the potential ecological risk index, Cr, Hg, and As in the soil do not appear in a polluted area. Although there is no Cr, Hg, and As pollution or potential ecological risk, the concentration of Cr, Hg, and As in the study area soil from inner Mongolia was higher than that in the other areas. In the study area, Cr may be mainly derived from a natural source of soil parental formation, where Hg and As may be mainly derived from industrial emissions, traffic pollution, and other human-related activities. All the heavy metals are subject to integrated impacts from human activities and changes to the natural environment.
引文
[1] 皱建美,孙江,戴伟,姚志斌,杨添,刘娜丽.北京近郊耕作土壤重金属状况评价分析.北京林业大学学报,2013,35(1):132- 138.
    [2] Kabata-Pendias A,Pendias H.Trace Elements in Soils and Plants.3rd ed.London:CSC Press,2001.
    [3] 戴彬,吕建树,战金成,张祖陆,刘洋,周汝佳.山东省典型工业城市土壤重金属来源、空间分布及潜在生态风险评价.环境科学,2015,36(2):507- 515.
    [4] 王幼奇,白一茹,王建宇.基于GIS的银川市不同功能区土壤重金属污染评价及分布特征.环境科学,2016,37(2):710- 716.
    [5] 蔡怡敏,陈卫平,彭驰,王铁宇,肖荣波.顺德水道土壤及沉积物中重金属分布及潜在生态风险评价.环境科学,2016,37(5):1763- 1770.
    [6] 方淑波,贾晓波,安树青,郑正.盐城海岸带土壤重金属潜在生态风险控制优先格局.地理学报,2012,67(1):27- 35.
    [7] 马啸,左锐,王金生,滕彦国,谷鹏,王膑.沈阳浑河冲洪积扇土壤的重金属空间分布特征及来源.环境科学研究,2014,27(11):1298- 1305.
    [8] 张永江,邓茂,王祥炳,姚靖,刘先良,程睿韬,张宗庆.黔江区农业区域土壤重金属健康风险评价.贵州师范大学学报:自然科学版,2016,34(2):37- 42.
    [9] 高鹏,刘勇,苏超.太原城区周边土壤重金属分布特征及生态风险评价.农业环境科学学报,2015,34(5):866- 873.
    [10] 崔邢涛,栾文楼,宋泽峰,马云超.石家庄城市土壤重金属空间分布特征及源解析.中国地质,2016,43(2):683- 690.
    [11] 庞西磊,胡东生.近22 ka以来吉兰泰盐湖的环境变化及成盐过程.中国沙漠,2009,29(2):193- 199.
    [12] 于志同,刘兴起,王永,葛兆帅,潘存峰,杨波.13.8ka以来内蒙古吉兰泰盐湖的演化过程.湖泊科学,2012,24(4):629- 636.
    [13] 张银霞,唐建宁.DPS统计软件在《试验统计方法》课程教学中的应用效果评价.宁夏农林科技,2012,53(9):161- 162,164- 164.
    [14] Gallardo K,Job C,Groot S P,Puype M,Demol H,Vandekerckhove J,Job D.Proteomic analysis of Arabidopsis seed germination and priming.Plant Physiology,2001,126(2):835- 848.
    [15] 魏复盛,陈静生,吴燕玉,郑春江.中国土壤环境背景值研究.环境科学,1991,12(4):12- 19,94- 94.
    [16] 国家环境保护局,国家技术监督局.GB 15618—1995 土壤环境质量标准.北京:中国标准出版社,2006.
    [17] 郭伟,孙文惠,赵仁鑫,赵文静,付瑞英,张君.呼和浩特市不同功能区土壤重金属污染特征及评价.环境科学,2013,34(4):1561- 1567.
    [18] HakansonL.An ecological risk index for aquatic pollution control.A sedimentological approach.Water Research,1980,14(8):975- 1001.
    [19] Lv J S,Zhang Z L,Li S,Liu Y,Sun Y Y,Dai B.Assessing spatial distribution,sources,and potential ecological risk of heavy metals in surfacesediments of the Nansi Lake,Eastern China.Journal of Radioanalytical and Nuclear Chemistry,2014,299(3):1671- 1681.
    [20] 徐争启,倪师军,庹先国,张成江.潜在生态危害指数法评价中重金属毒性系数计算.环境科学与技术,2008,31(2):112- 115.
    [21] 付义临,李涛,徐友宁,张江华,吴耀国.土壤重金属累积作用指示因子的筛选方法——灰色关联度分析法与数理统计法.地质通报,2015,34(11):2061- 2065.
    [22] 宁晓波,项文化,方晰,闫文德,邓湘雯.贵阳花溪区石灰土林地土壤重金属含量特征及其污染评价.生态学报,2009,29(4):2169- 2177.
    [23] 穆叶赛尔·吐地,吉力力·阿布都外力,姜逢清.天山北坡土壤重金属含量的分布特征及其来源解释.中国生态农业学报,2013,21(7):883- 890.
    [24] Bryan R B,Yair A.Badland Geomorphology and Piping.Norwich:Geo Books,1982:3- 24.
    [25] 蔡立梅,马瑾,周永章,黄兰椿,窦磊,张澄博,付善明.东莞市农业土壤重金属的空间分布特征及来源解析.环境科学,2008,29(12):3496- 3502.
    [26] 吕建树,张祖陆,刘洋,代杰瑞,王学,王茂香.日照市土壤重金属来源解析及环境风险评价.地理学报,2012,67(7):971- 984.
    [27] Wilding L P.Spatial variability:its documentation,accommodation and implication to soil surveys//NielsenDR,Bouma J,eds.Soil Spatial Variability.Wageningen:PUDOC Publishers,1985:166- 194.
    [28] 王学松,秦勇.利用对数正态分布图解析徐州城市土壤中重金属元素来源和确定地球化学背景值.地球化学,2007,36(1):98- 102.
    [29] 钱建平,张力,张爽,叶军,王士铁.桂林市汽车尾气汞污染.生态学杂志,2011,30(5):944- 950.
    [30] 吴雪芳,岑况,赵伦山,刘秀丽,史瑾瑾,朱雪涛.顺德地区土壤重金属污染生态地球化学调查与物源识别.物探与化探,2015,39(3):595- 601,605- 605.
    [31] 蒋靖坤,郝吉明,吴烨,Streets D G,段雷,田贺忠.中国燃煤汞排放清单的初步建立.环境科学,2005,26(2):34- 39.
    [32] Liu Y,Ma ZW,LvJS,Bi J.Identifying sources and hazardous risks of heavy metals in topsoils of rapidly urbanizing East China.Journal of Geographical Sciences,2016,26(6):735- 749.
    [33] 陈碧珊,苏文华,罗松英,吴增聪,莫莹,李秋琴,黄仁儒.湛江特呈岛红树林湿地土壤重金属含量特征及污染评价.生态环境学报,2017,26(1):159- 165.
    [34] 柴世伟,温琰茂,张云霓,董汉英,陈玉娟,龙祥葆,罗妙榕,向运荣,周毛.广州市郊区农业土壤重金属含量特征.中国环境科学,2003,23(6):592- 596.
    [35] Guo G H,Wu F C,Xie F Z,Zhang R Q.Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China.Journal of Environmental Sciences,2012,24(3):410- 418.
    [36] 邹曦,郑志伟,张志永,安然,胡莲,万成炎,胡红青.三峡水库小江流域消落区土壤重金属时空分布与来源分析.水生态学杂志,2012,33(4):33- 39.
    [37] 李晋昌,张红,石伟.汾河水库周边土壤重金属含量与空间分布.环境科学,2013,34(1):116- 120.
    [38] Lü J S,Liu Y,Zhang Z L,Dai J R,Dai B,Zhu Y C.Identifying the origins andspatial distributions of heavy metals in soils of Jucountry(Eastern China) using multivariate and geostatistical approach.Journal of Soils and Sediments,2015,15(1):163- 178.
    [39] Lü J S,Liu Y,Zhang Z L,Dai B.Multivariate geostatistical analyses of heavy metals in soils:spatial multi-scale variations in Wulian,Eastern China.Ecotoxicology and Environmental Safety,2014,107:140- 147.
    [40] Chen T,Liu X M,Zhu M Z,Zhao K L,Wu J J,Xu J M,Huang P M.Identification of trace element sources and associated risk assessment in vegetable soils of the urban-rural transitional area of Hangzhou,China.Environmental Pollution,2008,151(1):67- 78.
    [41] Facchinelli A,Sacchi E,Mallen L.Multivariate statistical and GIS-based approach to identify heavy metal sources in soils.Environmental Pollution,2001,114(3):313- 324.
    [42] 陈发虎,范育新,Madsen D B,春喜,赵晖,杨丽萍.河套地区新生代湖泊演化与“吉兰泰-河套”古大湖形成机制的初步研究.第四纪研究,2008,28(5):866- 873.
    [43] 杨丽萍.基于遥感与DEM的“吉兰泰-河套”古大湖重建研究[D].兰州:兰州大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700