用户名: 密码: 验证码:
黑河中游湿地不同恢复方式对土壤和植被的影响——以张掖国家湿地公园为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of different fallow and wetting methods on soil and vegetation properties in the middle reaches of the Heihe River: a case study of Zhangye National Wetland Park
  • 作者:周远刚 ; 赵锐锋 ; 赵海莉 ; 张丽华 ; 赵敏 ; 邹建荣
  • 英文作者:ZHOU Yuangang;ZHAO Ruifeng;ZHAO Haili;ZHANG Lihua;ZHAO Min;ZOU Jianrong;College of Geography and Environment Science, Northwest Normal University;Gansu Engineering Research Center of Land Utilization and Comprehension Consolidation;Administration of Zhangye National Wetland Park;
  • 关键词:湿地 ; 恢复方式 ; 土壤 ; 植被 ; 黑河中游
  • 英文关键词:wetland;;restoration methods;;soil;;vegetation;;middle reaches of the Heihe River
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:西北师范大学地理与环境科学学院;甘肃省土地利用与综合整治工程研究中心;张掖国家湿地公园管委会;
  • 出版日期:2019-02-27 08:29
  • 出版单位:生态学报
  • 年:2019
  • 期:09
  • 基金:国家自然科学基金项目(41761043,41261047);; 西北师范大学青年教师科研能力提升计划团队项目(NWNU-LKQN-17-7)
  • 语种:中文;
  • 页:318-328
  • 页数:11
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:Q948
摘要
湿地是自然界最富生物多样性的生态景观和人类社会赖以生存和发展的环境之一,对维护生态系统功能和区域生态安全有着重要意义。为阐明不同湿地恢复方式对土壤和植被的影响,以黑河中游地区张掖国家湿地公园为研究对象,比较了自然恢复方式、恢复利用方式和恢复保护方式下植物多样性、植物生长状态、土壤pH、盐分、容重、水分含量、有机碳、全氮、全磷、速效氮、速效磷的变化特征,研究结果表明:在自然恢复方式下,湿地各层土壤全磷、土壤速效磷、土壤速效氮、物种多样性值最高,反映出自然恢复方式可能成为干旱区土壤磷固存的有效手段,适当干扰可能成为干旱区提高物种多样性的有效方法;恢复保护方式下,湿地植物多度最高165.67±25,表明恢复保护方式有助于植被的生长繁殖;恢复利用方式下,湿地各层土壤含水量、土壤有机碳、土壤全氮、植被盖度值最高,土壤盐分含量、土壤pH值最低,湿地物种多样性较高。表明恢复利用方式可以有效降低湿地土壤盐分,提高土壤碳、氮含量的潜力,适当人为管理可能成为干旱区湿地恢复过程中提高湿地物种多样性的有效管理方法。该研究结果对于干旱区湿地恢复、保护与重建的效应评估和恢复方式的选择提供一定的理论支持和决策参考。
        Wetland is one of the most biologically diverse ecological landscapes in nature and the environment for the survival and development of human society. It is of great significance for the maintenance of ecosystem function and regional ecological security. The purpose of this study was to clarify the impacts of different wetland restoration methods on the physical and chemical properties of the soil and the vegetation characteristics. Inaddition, the application of different wetland restoration methods in arid areas was studied. We used Zhangye National Wetland Park, which is in the middle of the Heihe River, as the research object. Vegetation surveys and soil sampling were conducted in the summer of 2017 on three typical restoration modes in the main area of Zhangye National Wetland Park: natural restoration mode, restoration protection mode, and restoration and utilization mode. The size and road distribution of the area was such that 3—14 samples of 1 m~2 were used. A total of 25 samples were investigated and it was attempted to ensure that they were evenly distributed within the sample plot. The number and height of individual species were also recorded, and specimens of the individual species were brought back to the laboratory for identification. The soil samples from 0—10, 10—20, and 20—40 cm depth were collected from the center of the sample square by using the ring knife method; these were loaded into aluminum boxes and the fresh weight was measured. Another soil sample was taken from each sampling area and brought back to the laboratory. The litter and roots were collected and dried naturally. To determine the physical and chemical properties of the soil samples collected, they were passed through sieves with diameters of 1 mm, 0.25 mm, and 0.15 mm. The plant diversity, plant growth status, soil pH, soil temperature, and soil temperature under natural restoration, restoration utilization, and restoration protection were compared and analyzed. The variation in the characteristics of salinity, bulk density, water content, organic carbon, total nitrogen, total phosphorus, available nitrogen, and available phosphorus were also studied. The results showed that the soil total phosphorus, soil available nitrogen, and species diversity of each layer of wetland were the highest after natural restoration, which indicated that natural restoration could lead to soil phosphorus fixation in arid areas and that appropriate interference may be an effective method to improve species diversity in arid areas. Under the restoration protection mode, the wetland plants had the highest abundance(165.67±25), which indicated that the restoration protection method was conducive to the growth and reproduction of vegetation; the soil water content, soil organic carbon, soil total nitrogen and vegetation coverage were the highest, whereas the soil salt content and the soil pH value was the lowest, and the wetland species diversity was higher. It is shown that the recovery and utilization can effectively reduce the salt content of wetland soil and improve the potential soil carbon and nitrogen content. Appropriate human management may be an effective management method to improve wetland species diversity during the process of wetland restoration in arid areas. The results of this study have provided a theoretical basis and decision-making reference for the evaluation of wetland restoration, protection, and reconstruction effects and the selection of restoration methods in arid areas.
引文
[1] Engelhardt K A M,Ritchie M E.Effects of macrophyte species richness on wetland ecosystem functioning and services.Nature,2001,411(6838):687- 689.
    [2] Zhang L,Wang M H,Hu J,Ho Y S.A review of published wetland research,1991- 2008:Ecological engineering and ecosystem restoration.Ecological Engineering,2010,36(8):973- 980.
    [3] Hefting M M,van den Heuvel R N,Verhoeven J T A.Wetlands in agricultural landscapes for nitrogen attenuation and biodiversity enhancement:opportunities and limitations.Ecological Engineering,2013,56:5- 13.
    [4] Sakané N,Alvarez M,Becker M,B?hme B,Handa C,Kamiri H W,Langensiepen M,Menz G,Misana S,Mogha N G,M?seler B M,Mwita E J,Oyieke H A,Van Wijk M T.Classification,characterisation,and use of small wetlands in East Africa.Wetlands,2011,31(6):1103- 1116.
    [5] Nie Y,Li A N.Assessment of alpine wetland dynamics from 1976- 2006 in the vicinity of mount Everest.Wetlands,2011,31(5):875- 884.
    [6] Klement T,Martin P,Dietrich B,Lorang M S.Multiple stressors in coupled river-floodplain ecosystems.Freshwater Biology,2010,55(S1):135- 151.
    [7] Yepsen M,Baldwin A H,Whigham D F,McFarland E,LaForgia M,Lang M.Agricultural wetland restorations on the USA Atlantic Coastal Plain achieve diverse native wetland plant communities but differ from natural wetlands.Agriculture,Ecosystems & Environment,2014,197:11- 20.
    [8] 杨永兴.从魁北克2000-世纪湿地大事件活动看21世纪国际湿地科学研究的热点与前沿.地理科学,2002,22(2):150- 155.
    [9] Ko?os A,Banaszuk P.Mowing as a tool for wet meadows restoration:Effect of long-term management on species richness and composition of sedge-dominated wetland.Ecological Engineering,2013,55:23- 28.
    [10] An Y,Gao Y,Tong S Z,Lu X G,Wang X H,Wang G D,Liu X H,Zhang D J.Variations in vegetative characteristics of Deyeuxia angustifolia wetlands following natural restoration in the Sanjiang Plain,China.Ecological Engineering,2018,112:34- 40.
    [11] Wolf K L,Ahn C,Noe G B.Development of soil properties and nitrogen cycling in created wetlands[J].Wetlands,2011,31(4):699- 712.
    [12] Badiou P,McDougal R,Pennock D,Clark B.Greenhouse gas emissions and carbon sequestration potential in restored wetlands of the Canadian prairie pothole region.Wetlands Ecology and Management,2011,19(3):237- 256.
    [13] Huang J Y,Song C C,Nkrumah P N.Effects of wetland recovery on soil labile carbon and nitrogen in the Sanjiang Plain.Environmental Monitoring and Assessment,2013,185(7):5861- 5871.
    [14] Ballantine K,Schneider R,Groffman P,Lehmann J.Soil properties and vegetative development in four restored freshwater depressional wetlands.Soil Science Society of America Journal,2012,76(4):1482- 1495.
    [15] Van Roon M R.Wetlands in the Netherlands and New Zealand:Optimising biodiversity and carbon sequestration during urbanisation.Journal of Environmental Management,2012,101:143- 150.
    [16] Dodds W K,Wilson K C,Rehmeier R L,Knight G L,Wiggam S,Falke J A,Dalgleish H J,Bertrand K N.Comparing ecosystem goods and services provided by restored and native lands.BioScience,2008,58(9):837- 845.
    [17] Henry C P,Amoros C,Roset N.Restoration ecology of riverine wetlands:A 5-year post-operation survey on the Rh?ne River,France.Ecological Engineering,2002,18(5):543- 554.
    [18] 董凯凯,王惠,杨丽原,杨宝山,解伏菊.人工恢复黄河三角洲湿地土壤碳氮含量变化特征.生态学报,2011,31(16):4778- 4782.
    [19] 朱长明,张新,李均力,骆剑承.生态调水前后塔河下游湿地时空变化监测.资源科学,2014,36(2):420- 425.
    [20] 毋兆鹏,金海龙,王范霞.艾比湖退化湿地的生态恢复.水土保持学报,2012,26(3):211- 215,221- 221.
    [21] 赵锐锋,张丽华,赵海莉,姜朋辉,汪建珍.黑河中游湿地土壤有机碳分布特征及其影响因素.地理科学,2013,33(3):363- 370.
    [22] 白娜,王立,孔东升.黑河自然保护区沼泽湿地土壤化学性质的空间分布特征研究.草业学报,2017,26(5):15- 28.
    [23] 徐婷,赵成章,韩玲,郑慧玲,冯威,段贝贝.张掖湿地旱柳叶水势与中脉性状的关联性.生态学报,2017,37(10):3335- 3343.
    [24] 冯威,赵成章,岳冉,张翔,金建鑫.张掖国家湿地公园冬春季鸟类群落多样性和相似性分析.生态学杂志,2017,36(8):2224- 2231.
    [25] 唐娜,崔保山,赵欣胜.黄河三角洲芦苇湿地的恢复.生态学报,2006,26(8):2616- 2624.
    [26] 张彬,朱建军,刘华民,潘庆民.极端降水和极端干旱事件对草原生态系统的影响.植物生态学报,2014,38(9):1008- 1018.
    [27] Maestre F T,Quero J L,Gotelli N J,Escudero A,Ochoa V,Delgado-Baquerizo M,García-Gómez M,Bowker M A,Soliveres S,Escolar C,García-Palacios P,Berdugo M,Valencia E,Gozalo B,Gallardo A,Aguilera L,Arredondo T,Blones J,Boeken B,Bran D,Concei??o A A,Cabrera O,Chaieb M,Derak M,Eldridge D J,Espinosa C I,Florentino A,Gaitán J,Gatica M G,Ghiloufi W,Gómez-González S,Gutiérrez J R,Hernández R M,Huang X W,Huber-Sannwald E,Jankju M,Miriti M,Monerris J,Mau R L,Morici E,Naseri K,Ospina A,Polo V,Prina A,Pucheta E,Ramírez-Collantes D A,Rom?o R,Tighe M,Torres-Díaz C,Val J,Veiga J P,Wang D L,Zaady E.Plant species richness and ecosystem multifunctionality in global drylands.Science,2012,335(6065):214- 218.
    [28] 陈利顶,傅伯杰.干扰的类型、特征及其生态学意义.生态学报,2000,20(4):581- 586.
    [29] 张立敏,陈斌,李正跃.应用中性理论分析局域群落中的物种多样性及稳定性.生态学报,2010,30(6):1556- 1563.
    [30] 赵连春,赵成章,陈静,王继伟,李群.秦王川湿地不同密度柽柳枝-叶性状及其光合特性.生态学报,2018,38(5):1722- 1730.
    [31] Feyisa K,Beyene S,Angassa A,Aid M Y,De Leeuw J,Abebe A,Megersa B.Effects of enclosure management on carbon sequestration,soil properties and vegetation attributes in East African rangelands.CATENA,2017,159:9- 19.
    [32] 唐罗忠,生原喜久雄,户田浩人,黄宝龙.湿地林土壤的Fe2+,Eh及pH值的变化.生态学报,2005,25(1):103- 107
    [33] 田长彦,买文选,赵振勇.新疆干旱区盐碱地生态治理关键技术研究.生态学报,2016,36(22):7064- 7068.
    [34] 高进长,苏永红,席海洋,鱼腾飞.黑河下游河流沿岸土壤养分和盐分的研究.水土保持学报,2012,26(5):94- 98,102- 102.
    [35] 白军红,邓伟,朱颜明,栾兆擎,张玉霞.霍林河流域湿地土壤碳氮空间分布特征及生态效应.应用生态学报,2003,14(9):1494- 1498.
    [36] Larkin D J,Steffen J F,Gentile R M,Zirbel C R.Ecosystem changes following restoration of a buckthorn-invaded woodland.Restoration Ecology,2014,22(1):89- 97.
    [37] Noe G B,Hupp C R,Rybicki N B.Hydrogeomorphology influences soil nitrogen and phosphorus mineralization in floodplain wetlands.Ecosystems,2013,16(1):75- 94.
    [38] 李晓东,魏龙,张永超,郭丁,李旭东,傅华.土地利用方式对陇中黄土高原土壤理化性状的影响.草业学报,2009,18(4):103- 110.
    [39] 王长庭,龙瑞军,王启基,景增春,尚占环,丁路明.高寒草甸不同海拔梯度土壤有机质氮磷的分布和生产力变化及其与环境因子的关系.草业学报,2005,14(4):15- 20.
    [40] 李磊,蒯婕,刘昭伟,睢宁,周治国.花铃期短期土壤渍水对土壤肥力和棉花生长的影响.水土保持学报,2013,27(6):162- 166,171- 171.
    [41] McDowell R W,Nash D M,Robertson F.Sources of phosphorus lost from a grazed pasture receiving simulated rainfall.Journal of Environmental Quality,2007,36(5):1281- 1288.
    [42] 尹炜,李培军,裘巧俊,宋志文,席俊秀.植物吸收在人工湿地去除氮、磷中的贡献.生态学杂志,2006,25(2):218- 221.
    [43] Petersen J E,Brandt E C,Grossman J J,Allen G A,Benzing D H.A controlled experiment to assess relationships between plant diversity,ecosystem function and planting treatment over a nine year period in constructed freshwater wetlands.Ecological Engineering,2015,82:531- 541.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700