用户名: 密码: 验证码:
新疆典型城市气溶胶光学厚度变化特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Variation in aerosol optical depth over the typical cities in the Xinjiang region
  • 作者:胡俊 ; 钟珂 ; 亢燕铭 ; 陈勇 ; 杨凤娟 ; 刘琼 ; 张华
  • 英文作者:HU Jun;ZHONG Ke;KANG Yan-ming;CHEN Yong-hang;YANG Feng-juan;LIU Qiong;ZHANG Hua;College of Environmental Science and Engineering, Donghua University;Institute of Desert Meteorology,China Meteorological Administration;State Key Laboratory of Severe Weather, Chinese Academy of Meteorological;
  • 关键词:MODIS ; C006 ; 气溶胶光学厚度 ; 新疆地区 ; 城市分类 ; 年际变化
  • 英文关键词:MODIS C006;;aerosol optical depth;;Xinjiang region;;city classification;;interannual variation
  • 中文刊名:中国环境科学
  • 英文刊名:China Environmental Science
  • 机构:东华大学环境科学与工程学院;中国气象局乌鲁木齐沙漠气象研究所;中国气象科学研究院灾害天气国家重点实验室;
  • 出版日期:2019-10-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:10
  • 基金:国家自然科学基金资助项目(41675026,91644211,41375021);; 中国博士后科学基金资助项目(2019M651322)
  • 语种:中文;
  • 页:44-51
  • 页数:8
  • CN:11-2201/X
  • ISSN:1000-6923
  • 分类号:X513
摘要
利用2006~2017年Aqua-MODIS C006气溶胶日产品数据,选取新疆地区11个代表性城市进行分类,分析典型城市的AOD近12a变化趋势及特征.结果表明:2006~2017年间,除乌鲁木齐市AOD小幅度上升外,其余10个城市AOD均出现不同程度下降,北疆城市年均降幅较小,吐鲁番市12a间AOD下降了0.13,为哈密、焉耆等同纬度城市群中的最大降幅,南疆城市AOD年均降幅最为显著,阿克苏、喀什、和田和若羌地区AOD分别下降了0.18、0.16、0.16和0.09;AOD空间分布上,南疆为AOD峰值中心,年均值达0.50以上,北疆和东疆地区AOD年均值维持在0.20~0.22;同时,AOD具有典型的季节变化特征,春季为AOD峰值季节,夏季次之,秋、冬季AOD较低;此外,12a间新疆全区AOD出现不同程度降低,其中南疆沙尘源区为AOD下降的典型区域,减少区域呈现出沿昆仑山脉自南向北的带状分布.
        Eleven representative urban areas in the Xinjiang region were selected for classification based on Aqua-MODIS C006 aerosol daily product data from 2006 to 2017, and the variations in AOD were studied for the 11 cities in Xinjiang. The results showed that the AOD decreased in different degrees except in Urumqi during 2006 to 2017. On the contrary, AOD for the Urumqi area varied in a small increase during the same period. The average annual decline of AOD in the northern Xinjiang cities was relatively small, the AOD for Turpan decreased by 0.13 during the 12 years, which was the largest decline in the Hami and Yanqi urban agglomerations at the same latitude. The average annual decline of AOD in the southern Xinjiang cities was the most significant, the AODs decreased by 0.18, 0.16, 0.16 and 0.09 in Aksu, Kashgar, Hotan and Ruoqiang, respectively. The peak of the spatial distribution of AOD was in the southern Xinjiang, with an annual average higher than 0.50, and the annual average values of AOD in the northern and eastern Xinjiang were maintained at about 0.20 to 0.22. Meanwhile, AOD had seasonal variation characteristics, with a peak in spring, followed by summer, autumn and winter. In addition, the AOD decreased in different degrees in the Xinjiang region in the past 12 years, the source area of dust aerosols in the southern Xinjiang was the main area of AOD decline, and the reduction area showed a belt shape along the Kunlun Mountains from south to north.
引文
[1]Choobari O A,Zawar-Reza P,Sturman A.The global distribution of mineral dust and its impacts on the climate system:A review[J].Atmospheric Research,2014,138:152-165.
    [2]Uno I,Eguchi K,Yumimoto K,et al.Asian dust transported one full circuit around the globe[J].Nature Geoscience,2009,2(8):557.
    [3]Huang J,Wang T,Wang W,et al.Climate effects of dust aerosols over East Asian arid and semiarid regions[J].Journal of Geophysical Research:Atmospheres,2014,119(19):11398-11416.
    [4]Li Z,Lau W K M,Ramanathan V,et al.Aerosol and monsoon climate interactions over Asia[J].Reviews of Geophysics,2016,54(4):866-929.
    [5]Proestakis E,Amiridis V,Marinou E,et al.Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOP[J].Atmospheric Chemistry and Physics,2018,18(2):1337-1362.
    [6]Huang J,Fu Q,Su J,et al.Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints[J].Atmospheric Chemistry and Physics,2009,9(12):4011-4021.
    [7]吕睿,于兴娜,沈丽,等.北京春季大气气溶胶光学特性研究[J].中国环境科学,2016,36(6):1660-1668.Lv R,Yu X N,Shen L,et al.Aerosol optical properties in spring over urban Beijing[J].China Environmental Science,2016,36(6):1660-1668.
    [8]樊文智,秦凯,韩旭,等.基于移动激光雷达观测的徐州市区气溶胶分布特征[J].中国环境科学,2018,38(8):2857-2864.Fan W Z,Qin K,Han X,et al.Aerosol distribution characteristics in Xuzhou based on mobile lidar observation[J].China Environmental Science,2018,38(8):2857-2864.
    [9]刘状,孙曦亮,刘丹,等.2001~2017年中国北方省份气溶胶光学厚度的时空特征[J].环境科学学报,2018,38(8):3177-3184.Liu Z,Sun X L,Liu D,et al.Spatio-temporal characteristics of aerosol optical depth over Northern Provinces of China during 2001~2017[J].Acta Scientiae Circumstantiae,2018,38(8):3177-3184.
    [10]李一凡,陈文忠.基于MODIS和CALIOP卫星遥感数据的气溶胶光学厚度与海洋初级生产力相关性[J].中国环境科学,2017,37(1):76-86.Li Y F,Chen W Z.Correlation between aerosol optical depth and ocean primary productivity based on MODIS and CALIOP data[J].China Environmental Science,2017,37(1):76-86.
    [11]He Q,Gu Y,Zhang M.Spatiotemporal patterns of aerosol optical depth throughout China from 2003to 2016[J].Science of The Total Environment,2019,653:23-35.
    [12]赵仕伟,高晓清.利用MODIS C6数据分析中国西北地区气溶胶光学厚度时空变化特征[J].环境科学,2017,38(7):2637-2646.Zhao S W,Gao X Q.Analysis of spatial and temporal variations of aerosol optical depth in northwest china based on MODIS C6data[J].Environmental Science,2017,38(7):2637-2646.
    [13]王银牌,喻鑫,谢广奇.中国近15年气溶胶光学厚度时空分布特征[J].中国环境科学,2018,38(2):426-434.Wang Y P,Yu X,Xie G Q.Spatial distribution and temporal variation of aerosol optical depth over China in the past 15years[J].China Environmental Science,2018,38(2):426-434.
    [14]Wang W,Huang J,Zhou T,et al.Estimation of radiative effect of a heavy dust storm over northwest China using Fu-Liou model and ground measurements[J].Journal of Quantitative Spectroscopy and Radiative Transfer,2013,122:114-126.
    [15]郑有飞,刘贞,刘建军,等.中国北部一次沙尘过程中沙尘气溶胶的时空分布及输送特性[J].中国沙漠,2013,33(5):1440-1452.Zheng Y F,Liu Z,Liu J J,et al.The spatio-temporal distribution and transport behavior of a dust event in north China[J].Journal of Desert Research,2013,33(5):1440-1452.
    [16]刘贞,张雪姣,郑有飞,等.基于CALIPSO对中国春季一次沙尘暴的研究[J].环境科学学报,2016,36(12):4315-4327.Liu Z,Zhang X J,Zheng Y F,et al.Spatio-temporal distribution and transport behavior of a dust event based on the CALIPSO in China[J].Acta Scientiae Circumstantiae,2016,36(12):4315-4327.
    [17]Lin C Q,Liu G,Lau A K H,et al.High-resolution satellite remote sensing of provincial PM2.5trends in China from 2001to 2015[J].Atmospheric Environment,2018,180:110-116.
    [18]Kaufman Y J,Wald A E,Remer L A,et al.The MODIS 2.1μm channel-correlation with visible reflectance for use in remote sensing of aerosol[J].IEEE Transactions on Geoscience&Remote Sensing,1997,35:1286-1298.
    [19]Levy R C,Remer L A,Kleidman R G,et al.Global evaluation of the Collection 5MODIS dark-target aerosol products over land[J].Atmospheric Chemistry and Physics,2010,10(21):10399-10420.
    [20]Levy R C,Mattoo S,Munchak L A,et al.The Collection 6MODISaerosol products over land and ocean[J].Atmospheric Measurement Techniques,2013,6(11):159-259.
    [21]Remer L,Mattoo S,Levy R,et al.MODIS 3km aerosol product:algorithm and global perspective[J].Atmospheric Measurement Techniques Discussions,2013,6:1829-1844.
    [22]Li X,Xia X,Che H,et al.Contrast in column-integrated aerosol optical properties during heating and non-heating seasons at Urumqi-Its causes and implications[J].Atmospheric Research,2017,191:34-43.
    [23]Remer L A,Kleidman R G,Levy R C,et al.Global aerosol climatology from the MODIS satellite sensors[J].Journal of Geophysical Research:Atmospheres,2008,113(D14):D14S07.
    [24]李慧娟,胡列群,李帅.北疆地区MODIS 3km气溶胶光学厚度与PM10质量浓度的相关性分析[J].环境科学学报,2018,38(3):1109-1116.Li H J,Hu L Q,Li S.A correlation analysis of MODIS 3km aerosol optical depth and PM10concentration in Northern Xinjiang[J].Acta Scientiae Circumstantiae,2018,38(3):1109-1116.
    [25]董群,赵普生,陈一娜.降雨对不同粒径气溶胶粒子碰撞清除能力[J].环境科学,2016,37(10):3686-3692.Dong Q,Zhao P S,Chen Y N.Impact of collision removal of rainfall on aerosol particles of different sizes[J].Environmental Science,2016,37(10):3686-3692.
    [26]华凤皎,亢燕铭,钟珂.湍流效应对雨滴表面粒子捕集过程的影响[J].中国环境科学,2017,37(1):13-20.Hua F J,Kang Y M,Zhong K.The influence of turbulence effect on the collection process of particles on the surface of raindrops[J].China Environmental Science,2017,37(1):13-20.
    [27]Papadimas C D,Hatzianastassiou N,Mihalopoulos N,et al.Assessment of the MODIS Collections C005and C004aerosol optical depth products over the Mediterranean basin[J].Atmospheric Chemistry and Physics,2009,9(9):2987-2999.
    [28]胡俊,亢燕铭,陈勇航,等.基于MODIS_C006的乌鲁木齐10年气溶胶光学厚度变化特征[J].环境科学,2018,39(8):3563-3570.Hu J,Kang Y M,Chen Y H,et al.Analysis of aerosol optical depth variation characteristics for 10years in Urumqi based on MODIS_C006[J].Environmental Science,2018,39(8):3563-3570.
    [29]李霞,郭宇宏,卢新玉,等.乌鲁木齐市大气污染治理成效的综合评估分析[J].中国环境科学,2016,36(1):307-313.Li X,Guo Y H,Lu X Y,et al.Comprehensive evaluation and analysis of the effectiveness of air pollution control in Urumqi[J].China Environmental Science,2016,36(1):307-313.
    [30]中华人民共和国国务院.《大气污染防治行动计划》[R].北京:中国统计出版社,2013.State Council of the People's Republic of China.Air pollution prevention and control action plan[R].Beijing:China Statistics Press.2013.
    [31]葛洪燕.吐鲁番市颗粒物浓度变化特征及其与气象要素的关系[J].沙漠与绿洲气象,2018,12(2):78-83.Ge H Y.Variation characteristics of particulate matter concentration in Turpan and its relationship with meteorological elements[J].Desert and Oasis Meteorology,2018,12(2):78-83.
    [32]Zhang L,Li Q B,Gu Y,et al.Dust vertical profile impact on global radiative forcing estimation using a coupled chemical-transportradiative-transfer model[J].Atmospheric Chemistry&Physics,2013,13(14):7097-7114.
    [33]Chen C,Park T,Wang X,et al.China and India lead in greening of the world through land-use management[J].Nature Sustainability,2019,2(2):122-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700