天然橡胶生物合成相关基因表达与橡胶产量的相关性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Correlation Between the Expression Level of Natural Rubber Biosynthesis Genes and Rubber Yield
  • 作者:杨署光 ; 陈月异 ; 李言 ; 张世鑫 ; 张晓飞 ; 曾霞 ; 晁金泉 ; 田维敏
  • 英文作者:YANG Shuguang;CHEN Yueyi;LI Yan;ZHANG Shixin;ZHANG Xiaofei;ZENG Xia;CHAO Jinquan;TIAN Weimin;Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Rubber Biology and Genetic Resources of Rubber Tree, Minstry of Agriculture and Rural Affairs/State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops;
  • 关键词:巴西橡胶树 ; 割胶 ; 橡胶生物合成 ; 基因表达
  • 英文关键词:Hevea brasiliensis Muell. Arg.;;tapping;;rubber biosynthesis;;gene expression
  • 中文刊名:热带作物学报
  • 英文刊名:Chinese Journal of Tropical Crops
  • 机构:中国热带农业科学院橡胶研究所/农业部橡胶树生物学与遗传资源利用重点实验室/省部共建国家重点实验室培育基地-海南省热带作物栽培生理学重点实验室;
  • 出版日期:2019-03-22 13:53
  • 出版单位:热带作物学报
  • 年:2019
  • 期:03
  • 基金:国家重点研发计划(No.2018YFD1000502);; 国家青年科学基金(No.31700601);; 中国热带农业科学院橡胶研究所基本科研业务费专项(No.1630022016003,No.1630022017027)
  • 语种:中文;
  • 页:65-72
  • 页数:8
  • CN:46-1019/S
  • ISSN:1000-2561
  • 分类号:S794.1
摘要
胶乳被认为是橡胶树的一种与伤害应答相关联的保护物质。割胶可以显著促进橡胶生物合成,且此促进作用与激活乳管细胞中橡胶生物合成相关基因的表达相关,但相关性大小尚不清楚。本文通过qPCR分析了正常割胶条件下,6个橡胶生物合成相关基因HbHRT2、HbSRPP、HbREF、HbHMGR1、HbHRT1、HbGAPDH在5个橡胶树魏克汉种质和5个1981'IRRDB种质胶乳中的表达情况。结果显示:这6个基因在魏克汉种质中的表达水平显著高于1981'IRRDB种质,分别是后者的1.05~14.62、0.97~4.26、1.46~12.56、0.83~2.99、0.43~7.54、1.92~11.31倍,平均值是后者的7.54、2.55、5.69、1.71、2.71、4.91倍。相关性分析表明,这些基因的表达与橡胶树干胶产量呈正相关,其中,HbREF和HbGAPDH的表达水平与干胶产量之间的相关性最高,有望作为橡胶树产量育种的分子指标。
        Latex is thought to be a protective substance associated with injury response in rubber trees. Tapping can significantly promote rubber production, which should be closely related to the expression of genes involved in rubber biosynthesis in the laticifer cells of rubber trees. However, the exact relationship between the expression of the rubber biosynthesis genes and the dry rubber yield is yet to be elucidated. In the present study, qPCR was used to analyze the expression of six rubber biosynthesis genes, HbHRT2, HbSRPP, HbREF, HbHMGR1, HbHRT1 and HbGAPDH, in the laticifer cells of five Wichham germplasms and five 1981'IRRDB germplasms following tapping them with S/2 d/3 tapping system. The results showed that the expression of these genes was significantly higher in most Wichham germplasms than in 1981'IRRDB germplasms, as shown by fold increases of 1.05-14.62, 0.97-4.26, 1.46-12.56, 0.83-2.99, 0.43-7.54, 1.92-11.31, respectively, for HbHRT2, HbSRPP, HbREF, HbHMGR1, HbHRT1 and HbGAPDH. Correspondingly, the average fold change was 7.54, 2.55, 5.69, 1.71, 2.71, 4.91. Correlation analysis showed that the expression level of these genes was positively related to dry rubber yield. Two of the genes, HbREF and HbGAPDH, could be exploited as the molecular markers in high rubber yield breeding programs for both genes showed a highest correlation between their expression level and the corresponding rubber yield.
引文
[1]Seibert R J.The uses of Hevea for food in relation to its domestication[J].Missouri Botanical Garden Press,1948,35(2):117-121.
    [2]Baldwin J J T.Hevea:a first interpretation.A cytogenetic survey of a controversial genus,with a discussion of its implications to taxonomy and to rubber production[J].Journal Of Heredity,1947,38(2):54-64.
    [3]Priyadarshan P M,Goncalves P S.Hevea gene pool for breeding[J].Genetic Resources and Crop Evolution,2003,50(1):101-114.
    [4]de Souza L M,Le Guen V,Cerqueira-Silva C B,et al.Genetic diversity strategy for the management and use of rubber genetic resources:more than 1,000 wild and cultivated accessions in a 100-genotype core collection[J].Plos One,2015,10(7):1-20.
    [5]Lam L V,Thanh T,Chi V T,et al.Genetic diversity of hevea IRRDB?81 collection assessed by RAPD markers[J].Molecular Biotechnology,2009,42(3):292-298.
    [6]Saha T,Roy C B,Nazeer M A.Microsatellite variability and its use in the characterization of cultivated clones of Hevea brasiliensis[J].Plant Breeding,2005,124:86-92.
    [7]Souza L,Mantello C,Santos M,et al.Microsatellites from rubber tree(Hevea brasiliensis)for genetic diversity analysis and cross-amplification in six Hevea wild species[J].Conservation Genetics Resources,2009,1:75-79.
    [8]Feng S P,Li W G,Huang H S,et al.Development,characterization and cross-species/genera transferability of EST-SSR markers for rubber tree(Hevea brasiliensis)[J].Molecular Breeding,2009,23:85-97.
    [9]Mantello C C,Suzuki F I,Souza L M,et al.Microsatellite marker development for the rubber tree(Hevea brasiliensis):characterization and cross-amplification in wild Hevea species[J].BMC Research Notes,2012,5:329.
    [10]曾霞,李维国,高新生,等.巴西橡胶树选育种研究现状趋势及我国的研究策略[J].热带农业科学,2013,33(6):30-36.
    [11]Van Helten V M.Het oculeeren van Hevea.Arch voor Rubbercult Ned[M].Ind,1918,2:87.
    [12]Tan H.Strategies in rubber tree breeding[M]//Abbott A J,Atkin R K.Improving Vegetatively Propagated Crops[M].London:Academic Press,1987:27-62.
    [13]毛常丽,吴裕,张凤良,等.云南保存橡胶树魏克汉种质资源亲子系谱分析[J].植物遗传资源学,2015,16(6):1206-1213.
    [14]张晓飞,黄肖,高新生,等.橡胶树胶木兼优无性系杂交利用初报[J].热带作物学报,2015b,36(11):1921-1925.
    [15]余文才,宁连云,邱彦芬,等.橡胶树胶木兼优品种热垦525杂交子代早期鉴定[J].热带农业科技,2018,41(4):6-11.
    [16]李维国.橡胶树产量育种杂交组合早期评价及产量性状的分析[D].海口:海南大学,2013.
    [17]Koyama T,Tanaka Y.Isopentenyl diphosphate isomerase in rubber latex[J].Phytochemistry,1996,43(4):769-772.
    [18][18]Dennis M S,Light D R.Rubber elongation factor from Hevea brasiliensis Identification,characterization,and role in rubber biosynthesis[J].Journal of Biological Chemistry,1989,264(31):18 608-18 617.
    [19]Collins J E.The role of small rubber particle proteins in rubber biosynthesis[D].Reno:University of Nevada,2009.
    [20]Chye M L,Tan C T,Chua N H.Three genes encode3-hydroxy-3-methylglutaryl-coenzyme A reductase in Hevea brasiliensis:hmgr1 and hmgr3 are differentially expressed[J].Plant Molecular Biology,1992,19(3):473-484.
    [21]Asawatreratanakul K,Zhang Y W,Wititsuwannakul D,et al.Molecular cloning,expression and characterization of cDNAencoding cis-prenyltransferases from Hevea brasiliensis-a key factor participating in natural rubber biosynthesis[J].European Journal of Biochemistry,2003,270(23):4671-4680.
    [22]林位夫.作物次生产量特性及其利用对策探讨[J].热带作物学报,2012,33(4):602-604.
    [23]Kappachery S,Baniekal-Hiremath G,Yu J W,et al.Effect of over-and under-expression of glyceraldehyde 3-phosphate dehydrogenase on tolerance of plants to water-deficit stress[J].Plant Cell Tissue And Organ Culture,2015,121(1):97-107.
    [24]郝秉中,吴继林,云翠英.排胶对橡胶树乳管分化的促进作用[J].热带作物学报,1984,5(2):19-23.
    [25]Sookmark U,Pujade-Renaud V,Chrestin H,et al.Characterization of polypeptides accumulated in the latex cytosol of rubber trees affected by the tapping panel dryness syndrome[J].Plant And Cell Physiology,2002,43(11):1323-1333.
    [26]Adiwilaga K,Kush A.Cloning and characterization of c DNA encoding farnesyl diphosphate synthase from rubber tree(Hevea brasiliensis)[J].Plant Molecular Biology,1996,30(5):935-946.
    [27]Deng X M,Guo D,Yang S G,et al.Jasmonate signalling in regulation of rubber biosynthesis in laticifer cells of rubber tree(Hevea brasiliensis Muell.Arg.)[J].Journal Of Experimental Botany,2018,69(15):3559-3571.
    [28]曾日中,段翠芳,黎瑜,等.茉莉酸刺激的橡胶树胶乳cDNA消减文库的构建及其序列分析[J].热带作物学报,2003,24(3):1-6.
    [29]Bénédicte C,Anthony C,Yves H,et al.Expression profiling of the whole Arabidopsis Shaggy-Like Kinase multigene family by real-time reverse transcriptase-polymerase chain reaction[J].Plant Physiology,2002,130(2):577-590.
    [30]曾霞,胡彦师,黄华孙,等.橡胶树1981’IRRDB种质主要性状鉴定评价-1987年定植种质鉴定评价研究报告[J].热带作物学报,2006,27(2):34-38.
    [31]陈大伟,闫昭,刘昊岩.SVD系列算法在评分预测中的过拟合现象[J].山东大学学报,2014,44(3):15-21.
    [32]张晓飞,胡彦师,黄华孙,等.橡胶树优良亲本PR107的研究与利用[J].热带农业科学,2015,35(4):39-44.
    [33]张晓飞,胡彦师,黄华孙,等.橡胶树优良亲本RRIM600的研究与利用[J].热带农业科学,2014,34(6):35-40.