氯咪巴唑在鱼体的富集和代谢动力学
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The bioaccumulation and metabolic kinetics of climbazole in fish
  • 作者:姚理 ; 马艳芳 ; 周漪波 ; 窦文渊 ; 贾雨薇 ; 赵建亮 ; 应光国
  • 英文作者:YAO Li;MA Yan-fang;ZHOU Yi-bo;DOU Wen-yuan;JIA Yu-wei;ZHAO Jian-liang;YING Guang-guo;Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemical, China National Analytical Center(Guangzhou);Guangzhou Institute of Geochemistry, Chinese Academy of Sciences;Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, the Environmental Research Institute, South China Normal University;
  • 关键词:氯咪巴唑 ; 吸收动力学 ; 清除动力学 ; 生物富集
  • 英文关键词:climbazole;;uptake kinetics;;elimination kinetics;;bioaccumulation
  • 中文刊名:中国环境科学
  • 英文刊名:China Environmental Science
  • 机构:中国广州分析测试中心广东省化学危害应急检测技术重点实验室;中国科学院广州地球化学研究所;华南师范大学环境研究院广东省化学品污染与环境安全重点实验室;
  • 出版日期:2019-08-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:08
  • 基金:广东省科学院发展专项资金资助项目(2019GDASYL-0103022);; 国家自然科学基金资助项目(41877360)
  • 语种:中文;
  • 页:367-373
  • 页数:7
  • CN:11-2201/X
  • ISSN:1000-6923
  • 分类号:X171.5
摘要
选取中国南方地区典型生物尼罗罗非鱼作为受试生物,将其置于氯咪巴唑含量为2.00ng/mL的水体中暴露7d,考察氯咪巴唑在罗非鱼体内不同部位(鳃、肝脏、胆汁和血浆)的吸收和清除动力学过程,比较了氯咪巴唑在鱼体内不同部位的吸收和清除动力学速率.罗非鱼暴露于氯咪巴唑水溶液3d后,鱼体鳃、肝脏、胆汁和血浆中的氯咪巴唑达到最高浓度,分别为2.91ng/g,33.7ng/g,4.84ng/mL和2.58ng/mL;结束暴露3d后,氯咪巴唑在鳃、胆汁和血浆中的稳定浓度低于方法检测限,在肝脏中的稳定浓度为1.28ng/g.鱼体鳃、肝脏、胆汁和血浆中氯咪巴唑的吸收动力学常数k_u分别为0.069,0.813,0.286和0.136h~(-1);清除动力学常数k_e分别为0.033,0.029,0.082和0.060h~(-1);半衰期t_(1/2)分别为21.1,23.9,8.51和11.6h.氯咪巴唑在罗非鱼体内的吸收/清除动力学过程均符合伪一级动力学方程,方程的相关系数r~2范围为0.75~0.98.氯咪巴唑在鱼体鳃、肝脏、胆汁和血浆中的稳态生物富集系数对数值logBCF_(ss)分别为0.50,1.56,0.72和0.45,低于氯咪巴唑在野生罗非鱼体内的富集系数.
        We used a typical fish species in South China, tilapia, to investigate the uptake and elimination kinetics of climbazole in fish gill, liver, bile and plasma following a 7-d exposure to aqueous solution of climbazole at the concentration of 2.00 ng/mL. We also compared the uptake and elimination rates of climbazole in fish tissues. In the uptake process, the climbazole concentration reached the maximum after 3 days of exposure, at which point the concentration in fish gill, liver, bile and plasma were up to 2.91 ng/g, 33.7 ng/g, 4.84 ng/mL and 2.58 ng/mL, respectively. In the elimination process, the climbazole was nearly eliminated in fish after 3 days, with the climbazole concentrations lower than MQLs in fish gill, bile and plasma, and of 1.21 ng/g in fish liver. The uptake kinetic constants(k_u) of climbazole in fish gill, liver, bile and plasma were 0.069, 0.813, 0.286 and 0.136 h~(-1), respectively; while the corresponding elimination kinetic constants(k_e) were 0.033, 0.029, 0.082 and 0.060 h~(-1), respectively. The half-time values of climbazole in fish gill, liver, bile and plasma were 21.1, 23.9, 8.51 and 11.6 h, respectively. The uptake and elimination processes of climbazole in fish tissues followed the pseudo first-order kinetic model, with the correlation coefficients r~2 in the range of 0.75~0.98. The log bioconcentration factor of climbazole at steady state in fish gill, liver, bile and plasma were 0.50, 1.56, 0.72 and 0.45, respectively, which were lower than those in wild tilapia fish.
引文
[1] Zarn J A, Bruschweiler B J, Schlatter J R, et al. Azole fungicides affect mammalian steroidogenesis by inhibiting sterol 14alpha-demethylase and aromatase[J]. Environmental health perspectives, 2003,111(3):255-261.
    [2] Pople J E, Moore A E, Talbot D C. S, et al. Climbazole increases expression of cornified envelope proteins in primary keratinocytes[J].International Journal of Cosmetic Science, 2014,36(5):419-426.
    [3] Schwartz J R, Bacon R A, Shah R, et al. Therapeutic efficacy of antidandruff shampoos:a randomized clinical trial comparing products based on potentiated zinc pyrithione and zinc pyrithione/climbazole[J].International Journal of Cosmetic Science, 2013,35(4):381-387.
    [4] Turner G A, Matheson J R, Li G Z, et al. Enhanced efficacy and sensory properties of an anti-dandruff shampoo containing zinc pyrithione and climbazole[J]. International Journal of Cosmetic Science, 2013,35(1):78-83.
    [5] Perez-Rivera A A, Hu T, Aardema M J, et al. Evaluation of the genotoxicity of the imidazole antifungal climbazole:comparison to published results for other azole compounds[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2009,672(1):27-39.
    [6] Gouin T, Van-Egmond R, Price O R, et al. Prioritising chemicals used in personal care products in China for environmental risk assessment:application of the RAIDAR model[J]. Environmental Pollution,2012,165:208-214.
    [7] SCCP(Scientific Committee on Consumer Products), Opinion on climbazole 2009:http://eceuropaeu/health/ph_risk/committees/04_sccp/docs/sccp_o_164pdf.
    [8] Chen Z F, Ying G G. Occurrence, fate and ecological risk of five typical azole fungicides as therapeutic and personal care products in the environment:A review[J]. Environment International, 2015,84:142-153.
    [9] Liu W R, Yang Y Y, Liu Y S, et al. Biocides in wastewater treatment plants:mass balance analysis and pollution load estimation[J]. Journal of Hazardous Materials, 2017,329:310-320.
    [10] Zhang Q Q, Ying G G, Chen Z F, et al. Multimedia fate modeling and risk assessment of a commonly used azole fungicide climbazole at the river basin scale in China[J]. Science of the Total Environment, 2015,520:39-48.
    [11] Richter E, Wick A, Ternes T A, et al. Ecotoxicity of climbazole, a fungicide contained in antidandruff shampoo[J]. Environmental Toxicology and Chemistry, 2013,32(12):2816-2825.
    [12] Westlund P, Nasuhoglu D, Isazadeh S, et al. Investigation of acute and chronic toxicity trends of pesticides using high-throughput bioluminescence assay based on the test organism vibrio fischeri[J].Archives of Environmental Contamination and Toxicology, 2018,74(4):557-567.
    [13] Yao L, Zhao J L, Liu Y S, et al. Personal care products in wild fish in two main Chinese rivers:Bioaccumulation potential and human health risks[J]. Science of The Total Environment, 2018,621:1093-1102.
    [14] Richter E, Roller E, Kunkel U, et al. Phytotoxicity of wastewater-born micropollutants–characterisation of three antimycotics and a cationic surfactant[J]. Environmental Pollution, 2016,208:512-522.
    [15] Brienza M, Chiron S. Enantioselective reductive transformation of climbazole:a concept towards quantitative biodegradation assessment in anaerobic biological treatment processes[J]. Water Research2017,116:203-210.
    [16] Yao L, Zhao J L, Liu Y S, et al. Simultaneous determination of24personal care products in fish muscle and liver tissues using QuEChERS extraction coupled with ultra pressure liquid chromatography-tandem mass spectrometry and gas chromatographymass spectrometer analyses[J]. Analytical and Bioanalytical Chemistry, 2016,408(28):8177-8193.
    [17] Yao L, Lv Y Z, Zhang L J, et al. Determination of 24personal care products in fish bile using hybrid solvent precipitation and dispersive solid phase extraction cleanup with ultrahigh performance liquid chromatography-tandem mass spectrometry and gas chromatographymass spectrometry[J]. Journal of Chromatography A, 2018,1551:29-40.
    [18] Landrum P F, Lydy M J, Lee H. Toxicokinetics in aquatic systems:model comparisons and use in hazard assessment[J]. Environmental Toxicology and Chemistry, 1992,11(12):1709-1725.
    [19] Kobayashi J, Kinoshita K, Mizukawa K, et al. Dietary uptake kinetics of polychlorinated biphenyls from sediment-contaminated sandworms in a marine benthic fish(Pseudopleuronectes yokohamae)[J].Chemosphere, 2011,82(5):745-750.
    [20] Zhao J L, Furlong E T, Schoenfuss H L, et al. Uptake and disposition of select pharmaceuticals by bluegill exposed at constant concentrations in a flow-through aquatic exposure system[J].Environmental Science&Technology, 2017,51(8):4434-4444.
    [21] OECD(Organization for Economic Cooperation and Development).Bioaccumulation in fish:aqueous and dietary exposure OECD, Paris,2012 http://wwwoecdorg/chemicalsafety/testing/49190738pdf.
    [22]杨苏文,徐范范,赵明东.四溴双酚A在鲫鱼不同器官中的分布、富集及病理研究[J].中国环境科学, 2013,33(4):741-747.Yang S W, Xu F F, Zhao M D. Distribution and bioaccumulation of tetrabromobisphenol A in Carassius auratus tissues and its pathological effect[J]. China Environmental Science, 2013,33(4):741-747.
    [23] Trauner M, Boyer J L. Bile salt transporters:molecular characterization, function, and regulation[J]. Physiological Reviews,2003,83(2):633-671.
    [24] Pan C G, Peng F J, Ying G G. Removal, biotransformation and toxicity variations of climbazole by freshwater algae Scenedesmus obliquus[J].Environmental Pollution, 2018,240:534-540.
    [25] Tanoue R, Nomiyama K, Nakamura H, et al. Uptake and tissue distribution of pharmaceuticals and personal care products in wild fish from treated-wastewater-impacted streams[J]. Environmental Science&Technology, 2015,49(19):11649-11658.