喀斯特地区小尺度农业土壤砷的空间分布及污染评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial Distribution and Pollution Assessment of As at a Small Scale in Agricultural Soils of the Karst Region
  • 作者:汪花 ; 刘秀明 ; 刘方 ; 唐启琳 ; 王世杰
  • 英文作者:WANG Hua;LIU Xiu-ming;LIU Fang;TANG Qi-lin;WANG Shi-jie;State Key Laboratory of Environmental Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences;College of Resource and Environmental Engineering,Guizhou University;Puding Karst Ecosystem Observation and Research Station,Chinese Academy of Sciences;
  • 关键词: ; 农业土壤 ; 空间变异 ; 地统计学 ; 喀斯特
  • 英文关键词:arsenic;;agricultural soil;;spatial variability;;geostatistics;;karst
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:中国科学院地球化学研究所环境地球化学国家重点实验室;贵州大学资源与环境工程学院;中国科学院普定喀斯特生态系统观测研究站;
  • 出版日期:2019-01-20 17:30
  • 出版单位:环境科学
  • 年:2019
  • 期:06
  • 基金:国家重点研发计划项目(2018YFD0800600);; 贵州省高层次创新型人才培养计划“十”层次人才项目(黔科合平台人才[2016]5648)
  • 语种:中文;
  • 页:405-413
  • 页数:9
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X53
摘要
贵州岩溶地貌分布广泛,部分地区的土壤砷(As)污染问题比较突出.为了解高As背景地区农业土壤As含量分布特征,选取贵州省兴义市西南部具有代表性的As污染区(典型喀斯特区、亚喀斯特区)为研究对象,并以非喀斯特区作为对照组,采用地统计分析与GIS相结合的方法研究农业土壤As的空间变异和污染状况,并采用Moran's I系数分析在小尺度下土壤As的空间自相关性及其方向性特征.结果表明,不同地貌区土壤中As含量从高到低依次为:典型喀斯特区>亚喀斯特区>非喀斯特区,其中典型喀斯特区农业土壤As的算术均值与几何均值分别为47. 9 mg·kg~(-1)和43. 3 mg·kg~(-1),亚喀斯特区其值分别为36. 8 mg·kg~(-1)和30. 1 mg·kg~(-1),两个区域农业土壤As含量明显高于贵州土壤As背景值,As的超标率分别为98. 5%和96. 7%,表现出明显的As累积,而非喀斯特区As超标率仅为6. 7%;独立样本T检验结果表明,在3个不同地貌类型中,农业土壤与自然土壤As含量均无显著性差异(P> 0. 05).农业土壤As的Moran's I系数为0. 45,Z值为11. 61,在本采样尺度下具有显著的正空间自相关(P <0. 05),存在空间聚集,尤其是东北-西南方向空间自相关性较好,以结构性变异为主.农业土壤样本As总体上处于轻微污染至轻度污染之间,分别占27. 10%、29. 02%,部分地区处于中度污染级别,而处于无污染状态的样本占41. 94%.
        The karst landforms in Guizhou are widely distributed,and the problem of soil arsenic(As) pollution is prominent in these areas because of the high environmental background levels. In order to study the distribution characteristics of As contents in agricultural soils with high background values of As,representative As polluted regions(typical karst region,semi-karst region) in southwestern Xingyi City of Guizhou Province were selected as the research objects,and the non-karst region served as the control group. Geostatistical analyses were then combined with GIS data to study the spatial variability and pollution conditions of As in agricultural soils. Furthermore,Moran's I statistic was used to analyze the spatial autocorrelation and directional characteristics of As at a small scale in the soil. The results showed that As contents in soils from different geomorphological regions were ranked as follows:typical karst region > semi-karst region > non-karst region. The arithmetic mean value and geometric mean value of As in agricultural soils in the typical karst region were 47. 9 mg·kg~(-1) and 43. 3 mg·kg~(-1),respectively. Meanwhile,the arithmetic mean value and geometric mean value of As in agricultural soils in the semi-karst region were 36. 8 mg·kg~(-1) and 30. 1 mg·kg~(-1),respectively. The As content in agricultural soils from these two regions was significantly higher than the background values of As in Guizhou. In addition,the standard exceedance rates of As in those two regions were 98. 5% and 96. 7%,respectively,thus demonstrating a high degree of As accumulation. In contrast,the standard exceedance rate of As in the non-karst region was only 6. 7%. Among these three aforementioned landform types,the results of independent sample T tests showed that there were no significant differences in the content of As between agricultural soil and(natural) soil(P > 0. 05). The Moran's I coefficient of the As content in agricultural soil was 0. 45,and the Z value was 11. 61,thus suggesting that there was a significant positive spatial autocorrelation at the small scale(P < 0. 05),especially in the northeast-southwest direction,and the structural variation was dominant. The As polluted agricultural soils were generally at the slight pollution and mild pollution levels,which accounted for 27. 10% and 29. 02% of the samples,respectively.However,some regions were at the level of moderate pollution. The non-polluted samples accounted for 41. 94% of the samples.
引文
[1] Alam M O, Chakraborty S, Bhattacharya T. Soil arsenic availability and transfer to food crops in Sahibganj,India with reference to human health risk[J]. Environmental Processes,2016,3(4):763-779.
    [2] Sharifi R,Moore F,Keshavarzi B,et al. Assessment of health risks of arsenic exposure via consumption of crops[J]. Exposure and Health,2018,10(2):129-143.
    [3]魏复盛,陈静生,吴燕玉,等.中国土壤环境背景值研究[J].环境科学,1991,12(4):12-19.Wei F S,Chen J S,Wu Y Y,et al. Study on the background contents on 61 elements of soils in China[J]. Environmental Sciences,1991,12(4):12-19.
    [4]中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990. 1-501.
    [5]陈武,任明强,王宁宁. As、Hg元素对土壤环境质量和农产品质量安全的影响[J].贵州农业科学,2009,37(2):164-166,169.Chen W,Ren M Q,Wang N N. The effects of arsenic and mercury on soil environmental quality and the quality security of agricultural products[J]. Guizhou Agricultural Sciences,2009,37(2):164-166,169.
    [6]王宇,彭淑惠,杨双兰.云南岩溶区As、Cd元素异常特征[J].中国岩溶,2012,31(4):377-381.Wang Y,Peng S H,Yang S L. The anomaly features of As and Cd in the karst area in Yunan province[J]. Carsologica Sinica,2012,31(4):377-381.
    [7]何邵麟.贵州表生沉积物地球化学背景特征[J].贵州地质,1998,15(2):149-156.He S L. Geochemical background of supergene sediments in Guizhou[J]. Guizhou Geology,1998,15(2):149-156.
    [8] Morales N A,Martínez D,García-Meza J V,et al. Total and bioaccessible arsenic and lead in soils impacted by mining exploitation of Fe-oxide-rich ore deposit at Cerro de Mercado,Durango,Mexico[J]. Environmental Earth Sciences,2015,73(7):3249-3261.
    [9] Qi J Y,Zhang H L,Li X P,et al. Concentrations,spatial distribution,and risk assessment of soil heavy metals in a Zn-Pb mine district in southern China[J]. Environmental Monitoring and Assessment,2016,188(7):413.
    [10] Posada-Ayala I H,Murillo-Jiménez J M,Shumilin E,et al.Arsenic from gold mining in marine and stream sediments in Baja California Sur, Mexico[J]. Environmental Earth Sciences,2016,75(11):996.
    [11] Cárcamo V,Bustamante E,Trangolao E,et al. Simultaneous immobilization of metals and arsenic in acidic polluted soils near a copper smelter in central Chile[J]. Environmental Science and Pollution Research,2012,19(4):1131-1143.
    [12] Cai L M,Xu Z C,Bao P,et al. Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde,southeast China[J]. Journal of Geochemical Exploration,2015,148:189-195.
    [13] Mc Bride M B,Shayler H A,Russell-Anelli J M,et al. Arsenic and lead uptake by vegetable crops grown on an old orchard site amended with compost[J]. Water,Air,&Soil Pollution,2015,226(8):265.
    [14] Dumat C, Pierart A, Shahid M, et al. Collective conceptualization and management of risk for arsenic pollution in urban community gardens[J]. Review of Agricultural,Food and Environmental Studies,2018,99(2):167-187.
    [15] Buttafuoco G,Tarvainen T,Jarva J,et al. Spatial variability and trigger values of arsenic in the surface urban soils of the cities of Tampere and Lahti,Finland[J]. Environmental Earth Sciences,2016,75(10):896.
    [16]刘畅,宋波,张云霞,等.西江流域土壤砷含量空间变异与污染评价[J].环境科学,2018,39(2):899-908.Liu C, Song B, Zhang Y X, et al. Spatial variability and contamination of arsenic in soils of Xijiang river basin[J].Environmental Science,2018,39(2):899-908.
    [17]刘庆,杜志勇,史衍玺,等.基于GIS的山东寿光蔬菜产地土壤重金属空间分布特征[J].农业工程学报,2009,25(10):258-263.Liu Q, Du Z Y, Shi Y X, et al. Spatial distribution characteristics of soil heavy metals in vegetable growing area based on GIS in Shouguang city, Shandong province[J].Transactions of the CSAE,2009,25(10):258-263.
    [18]金修齐.小尺度农田土壤重金属空间分布、来源解析及污染评价[D].昆明:昆明理工大学,2017.
    [19] HJ/T 166-2004,土壤环境监测技术规范[S].
    [20]秦海波,朱建明,李社红,等.高压密闭罐溶样-氢化物原子荧光法测定环境样品中的砷[J].矿物学报,2010,30(3):398-402.Qin H B,Zhu J M,Li S H,et al. Determination of total arsenic in environmental samples by hydride generation-atomic fluorescence spectrometry with PTFE bomb[J]. Acta Mineralogica Sinica,2010,30(3):398-402.
    [21]张朝生,陶澍,袁贵平,等.天津市平原土壤微量元素含量的空间自相关研究[J].土壤学报,1995,32(1):50-57.Zhang C S,Tao S,Yuan G P,et al. Spatial autocorrelation analysis of trace element contents of soil in Tianjin plain area[J]. Acta Pedologica Sinica,1995,32(1):50-57.
    [22]刘庆,夏江宝,谢文军.半方差函数与Moran's I在土壤微量元素空间分布研究中的应用—以寿光市为例[J].武汉大学学报(信息科学版),2011,36(9):1129-1133.Liu Q,Xia J B,Xie W J. Application of semi-variogram and Moran's I to spatial distribution of trace elements in soil:a case study in Shouguang county[J]. Geomatics and Information Science of Wuhan University,2011,36(9):1129-1133.
    [23]滕彦国,庹先国,倪师军,等.应用地质累积指数评价沉积物中重金属污染:选择地球化学背景的影响[J].环境科学与技术,2002,25(2):7-9.Teng Y G,Tuo X G,Ni S J,et al. Applying geo-accumulation index to assess heavy metal pollution in sediment:Influence of different geochemical background[J]. Environmental Science and Technology,2002,25(2):7-9.
    [24]张云霞,宋波,陈同斌,等.广西西江流域土壤铅空间分布与污染评价[J].环境科学,2018,39(5):2446-2455.Zhang Y X,Song B,Chen T B,et al. Spatial distribution study and pollution assessment of Pb in soils in the Xijiang river drainage of Guangxi[J]. Environmental Science,2018,39(5):2446-2455.
    [25]雷凌明,喻大松,陈玉鹏,等.陕西泾惠渠灌区土壤重金属空间分布特征及来源[J].农业工程学报,2014,30(6):88-96.Lei L M,Yu D S,Chen Y P,et al. Spatial distribution and sources of heavy metals in soils of Jinghui irrigated area of Shaanxi,China[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(6):88-96.
    [26] GB 15618-2018,土壤环境质量农用地土壤污染风险管控标准(试行)[S].
    [27]马宏宏,余涛,杨忠芳,等.典型区土壤重金属空间插值方法与污染评价[J].环境科学,2018,39(10):4684-4693.Ma H H,Yu T,Yang Z F,et al. Spatial interpolation methods and pollution assessment of heavy metals of soil in typical areas[J]. Environmental Science,2018,39(10):4684-4693.
    [28]师荣光,赵玉杰,周启星,等.苏北优势农业区土壤砷含量空间变异性研究[J].农业工程学报,2008,24(1):80-84.Shi R G,Zhao Y J,Zhou Q X,et al. Spatial variability analysis of soil arsenic content in predominant agricultural area in the north of Jiangsu province[J]. Transactions of the CSAE,2008,24(1):80-84.
    [29]张建江,杨胜元,王林.贵州土壤环境污染现状及其防治建议[J].贵州地质,2008,25(4):292-296.Zhang J Z,Yang S Y,Wang L. The edatope pollution situation and prevention suggestions of Guizhou province[J]. Guizhou Geology,2008,25(4):292-296.
    [30] Zhou Y T,Niu L L,Liu K,et al. Arsenic in agricultural soils across China:Distribution pattern, accumulation trend,influencing factors,and risk assessment[J]. Science of the Total Environment,2018,616-617:156-163.
    [31]余垚,朱丽娜,郭天亮,等.我国含磷肥料中镉和砷土壤累积风险分析[J].农业环境科学学报,2018,37(7):1326-1331.Yu Y,Zhu L N,Guo T L,et al. Risk assessment of cadmium and arsenic in phosphate fertilizer[J]. Journal of AgroEnvironment Science,2018,37(7):1326-1331.
    [32]兴义市统计局. 2017年兴义市统计年鉴[Z].贵州:兴义市统计局,2017.
    [33]阮玉龙,李向东,黎廷宇,等.喀斯特地区农田土壤重金属污染及其对人体健康的危害[J].地球与环境,2015,43(1):92-97.Ruan Y L,Li X D,Li T Y,et al. Heavy metal pollution in agricultural soils of the karst areas and its harm to human health[J]. Earth and Environment,2015,43(1):92-97.
    [34] Huang M J,Sun H R,Liu H T,et al. Atmospheric arsenic deposition in the pearl river delta region, south China:Influencing factors and speciation[J]. Environmental Science&Technology,2018,52(5):2506-2516.
    [35]任明强,张家德,卢正艳,等.贵州喀斯特与非喀斯特农业生态地质环境质量对比研究[J].中国岩溶,2009,28(4):397-401.Ren M Q,Zhang J D,Lu Z Y,et al. Contrastive studies on agro-ecological geology environment quality between karst and non-karst area in Guizhou[J]. Carsologica Sinica,2009,28(4):397-401.
    [36]刘秀明,王世杰,冯志刚,等.贵州岩溶区镶嵌景观上覆土层的粒度分布特征及其指示意义[J].中国岩溶,2002,21(4):245-251.Liu X M,Wang S J,Feng Z G,et al. The grain-size distributing features of soil layers on a carbonate-noncarbonate rock contact karst landscape in Guizhou province and their indication[J].Carsologica Sinica,2002,21(4):245-251.
    [37]成晓梦.云南不同成土母质土壤剖面中重金属元素地球化学行为与风险分析[D].北京:中国地质大学(北京),2016.
    [38]唐豆豆,袁旭音,汪宜敏,等.地质高背景农田土壤中水稻对重金属的富集特征及风险预测[J].农业环境科学学报,2018,37(1):18-26.Tang D D, Yuan X Y, Wang Y M, et al. Enrichment characteristics and risk prediction of heavy metals for rice grains growing in paddy soils with a high geological background[J].Journal of Agro-Environment Science,2018,37(1):18-26.
    [39]谢代兴,杨杨,苏春田,等.碳酸盐岩与碎屑岩母质土壤地球化学特征及质量差异[J].贵州农业科学,2015,43(4):128-132.Xie D X,Yang Y,Su C T,et al. Contrasts of geochemical characteristics and environmental quality between soils of carbonate and clastic matrix[J]. Guizhou Agricultural Sciences,2015,43(4):128-132.
    [40]张燕,铁柏清,刘孝利,等.玉米秸秆生物炭对水稻不同生育期吸收积累As、Cd的影响[J].生态环境学报,2017,26(3):500-505.Zhang Y,Tie B Q,Liu X L,et al. Effects of corn stalk biochar on absorption and accumulation of arsenic and cadmium in rice at different growth stages[J]. Ecology and Environmental Sciences,2017,26(3):500-505.
    [41]张春荣,庞绪贵,高宗军,等.鱼台区域土壤中砷的分布特征及其成因分析[J].安徽农业科学,2010,38(11):5755-5757,5820.Zhang C R,Pang X G,Gao Z J,et al. Distribution of arsenic in soil of Yutai region and analysis on its causes[J]. Journal of Anhui Agricultural Sciences,2010,38(11):5755-5757,5820.
    [42]何腾兵,董玲玲,李广枝,等.喀斯特山区不同母质(岩)发育的土壤主要重金属含量差异性研究[J].农业环境科学学报,2007,27(1):188-193.He T B,Dong L L,Li G Z,et al. Differences of heavy metal contents in soils derived from different parent materials/rocks in karst mountain area[J]. Journal of Agro-Environment Science,2007,27(1):188-193.
    [43]李丽辉,王宝禄.云南省土壤As、Cd元素地球化学特征[J].物探与化探,2008,32(5):497-501.Li L H,Wang B L. Geochemical characteristics of As and Cd in soils of Yunnan province[J]. Geophysical and Geochemical Exploration,2008,32(5):497-501.