青海湖流域沼泽和湿草甸表层土壤有机碳含量及其结构特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Organic Carbon Contents of Surface Soils in the Marshes and Wet Meadows of Qinghai Lake Basin and Their Structural Characteristics
  • 作者:董颖 ; 耿玉清 ; 黄桂林 ; 李娜 ; 张超英
  • 英文作者:DONG Ying;GENG Yuqing;HUANG Guilin;LI Na;ZHANG Chaoying;College of Forestry, Beijing Forestry University;Academy of Inventory and Planning, State Forestry and Grassland Administration;
  • 关键词:沼泽 ; 湿草甸 ; 表层土壤 ; 有机碳结构 ; 13C核磁共振技术
  • 英文关键词:marsh;;wet meadow;;surface soil;;organic carbon structure;;13C nuclear magnetic resonance technology
  • 中文刊名:湿地科学
  • 英文刊名:Wetland Science
  • 机构:北京林业大学林学院;国家林业和草原局调查规划设计院;
  • 出版日期:2019-08-15
  • 出版单位:湿地科学
  • 年:2019
  • 期:04
  • 基金:国家重点研发计划专项项目(2016YFC0503401-04)资助
  • 语种:中文;
  • 页:104-110
  • 页数:7
  • CN:22-1349/P
  • ISSN:1672-5948
  • 分类号:S153.62
摘要
为了研究青海湖流域沼泽和湿草甸表层土壤有机碳含量及其结构特征,于2015年9月15~17日,在青海湖流域的小泊湖、仙女湾和鸟岛的沼泽和湿草甸中,采集表层(0~10 cm深度)土壤样品,测定表层土壤有机碳含量;利用~(13)C核磁共振技术,分析表层土壤有机碳的结构特征。研究结果表明,仙女湾、小泊湖和鸟岛湿草甸表层土壤总有机碳质量比分别为32.38 g/kg、24.85 g/kg和24.80 g/kg,比沼泽的减少了11.7%、6.68%和21.22%;表层土壤水溶性碳质量比分别为71.99 mg/kg、64.13 mg/kg和40.31 mg/kg,比沼泽的减少了13.21%、3.33%和15.78%;表层土壤易氧化碳质量比分别为850.40 mg/kg、575.99 mg/kg和663.29 mg/kg,比沼泽的减少了0.83%、21.35%和10.48%;沼泽和湿草甸表层土壤有机碳结构都以烷氧碳含量(36.71%~54.19%)所占比例最高,其它依次为烷基碳含量(25.58%~36.82%)、芳香碳含量(6.20%~16.27%)和羧基碳含量(6.65%~15.41%);湿草甸表层土壤有机碳中的烷基碳含量和芳香碳含量所占比例小于沼泽,而烷氧碳含量所占比例大于沼泽;随着沼泽退化为湿草甸,其表层土壤的总有机碳及其组分含量显著减少,沼泽表层土壤有机碳结构更复杂,其有机碳库更稳定,湿草甸表层土壤有机碳结构相对简单。
        In order to investigate content and structural characteristics of the organic carbon in surface soils in the marshes and wet meadows, 3 sampling areas Fairy Bay, Small Mooring Lake and Bird Island were selected, and the surface soil(0-10 cm depth) were collected from September 15 to 17, 2015 in Qinghai Lake Basin.The contents of soil organic carbon were determined, and the structural characteristics of soil organic carbon were analyzed by using13 C nuclear magnetic resonance technology. The results showed that in Fairy Bay,Small Mooring Lake and Bird Island, the total organic carbon contents in surface soils in the wet meadows were 32.38 g/kg, 24.85 g/kg and 24.80 g/kg, which decreased by 11.7%, 6.68% and 21.22% compared with those in the marshes. The soil dissolved organic carbon contents in the surface soils in the wet meadows were71.99 mg/kg, 64.13 mg/kg and 40.31 mg/kg, which decreased by 13.21%, 3.33% and 15.78% compared with those in marshes. The soil easily oxidized organic carbon contents in surface soils in the wet meadows were850.40 mg/kg, 575.99 mg/kg and 663.29 mg/kg, which decreased by 0.83%, 21.35% and 10.48% compared with those in marshes. The proportion of alkoxy carbon content(36.71%-54.19%) were maximum in surface soil organic carbon structure in marshes and wet meadows, followed by alkyl carbon(25.58%-36.82%), aromatic carbon(6.20%-16.27%) and carbonyl carbon(6.65%-15.41%). The proportion of alkyl carbon content and aromatic carbon content of surface soil in wet meadows were less than those in marshes, while the proportion of alkoxy carbon content of surface soil in wet meadows were greater than those in marshes. The marshes degradated into wet meadows, the contents of total organic carbon in the surface soil and its components decreased significantly. The organic carbon contents in surface soil of the marshes were more stable, and the stability of organic carbon in surface soil of wet meadows was weak.
引文
[1]张旭辉,李典友,潘根兴,等.中国湿地土壤碳库保护与气候变化问题[J].气候变化研究进展, 2008, 44(4):202-208.
    [2]Bridgham S D, Megoniga J P, Keller J K, et al. The carbon balance of North American Wetlands[J]. Wetlands, 2006, 2266(4):899-916.
    [3]徐江兵,何园球,李成亮,等.不同施肥处理红壤生物活性有机碳变化及与有机碳组分的关系[J].土壤, 2007, 3399(4):633-632.
    [4]李睿,江长胜,郝庆菊.缙云山不同土地利用方式下土壤团聚体中活性有机碳分布特征[J].环境科学, 2015, 3366(9):3429-3437.
    [5]Li Qi, Chen Dongdong, Zhao Liang, et al. More than a century of Grain for Green Program is expected to restore soil carbon stock on alpine grassland revealed by field13C pulse labeling[J]. Science of the Total Environment, 2016, 555500:17-26.
    [6]马维伟,王跃思,李广,等.尕海湿地植被退化过程中植被—土壤系统有机碳储量变化特征[J].应用生态学报, 2018, 2299(12):3900-3906.
    [7]夏品华,喻理飞,寇永珍,等.贵州高原草海湿地土壤有机碳分布特征及其与酶活性的关系[J].环球科学学报, 2017, 3377(4):1479-1485.
    [8]Tatzber M, Mutsch F, Mentler A, et al. Mid-infrared spectroscopy for topsoil layer identification according to litter type and decompositional stage demonstrated on a large sample set of Austrian forest soils[J]. Geoderma, 2011, 116666(1):162-170.
    [9]郭素春,郁红艳,朱雪竹,等.长期施肥对潮土团聚体有机碳分子结构的影响[J].土壤学报, 2013, 5500(5):922-930.
    [10]张仲胜,李敏,宋晓林,等.气候变化对土壤有机碳库分子结构特征与稳定性影响研究进展[J].土壤学报, 2018, 5555(2):273-282.
    [11]Duarte R M B O, Fernandez-Getino A P, Duarte A C. Humic acids as proxies for assessing different Mediterranean forest soils signatures using solid-state CPMAS13C-NMR spectroscopy[J].Chemosphere, 2013, 9911(11):1556-1565.
    [12]Guggenberger G, Zech W, Haumaier L, et al. Land-use effects on the composition of organic matter in particle-size separates of soils:IT. CPMAS and solution13C-NMR analysis[J]. European Journal of Soil Science, 1995, 4466:147-158.
    [13]李娜,盛明,尤孟阳,等.应用13C核磁共振技术研究土壤有机质化学结构进展[J].土壤学报, 2019, 5566(4):796-812.
    [14]Liu S S, Zhu Y R, Wu F C, et al. Using solid13C NMR coupled with solution31P-NMR spectroscopy to investigate molecular species and lability of organic carbon and phosphorus from aquatic plants in Tai Lake, China[J]. Environmental Science and Pollution Research, 2017, 222(2):1880-1889.
    [15]Li C L, Li Q, Zhao L, et al. Land-use effects on organic and inorganic carbon patterns in the topsoil around Qinghai Lake basin,Qinghai-Tibetan Plateau[J]. Catena, 2016, 1477:345-355.
    [16]江波,张路,欧阳志云.青海湖湿地生态系统服务价值评估[J].应用生态学报, 2015, 2266(10):3137-3144.
    [17]曹生奎,曹广超,陈克龙,等.青海湖高寒湿地土壤有机碳含量变化特征[J].土壤, 2013, 4455(3):392-398
    [18]曹生奎,陈克龙,曹广超,等.青海湖流域矮嵩草草甸土壤有机碳密度分布特征[J].生态学报, 2014, 344(2):482-490.
    [19]杨英,耿玉清,黄桂林,等.青海小泊湖区沼泽化草甸、草甸和沙地的土壤酶活性[J].湿地科学, 2016, 1144(1):20-26.
    [20]Weil R R, Islam K R, Stine M A, et al. Estimating active carbon for soil quality assessment:A simplified method for laboratory and field use[J]. American Journal of Alternative Agriculture,2003, 1188(1):3-17.
    [21]Mathers N J, Xu Z H, Berners-Price S J, et al. Hydrofluoric acid pretreatment for improving 13C CPMAS NMR spectral quality of forest soils in South-east Queensland[J]. Australian Journal of Soil Research, 2002, 4400(4):665-674.
    [22]Czimczik C I, Preston C M, Schmidt M W I, et al. How surface fire in Siberian Scots pine forests affects soil organic carbon in the forest floor:Stocks, molecular structure, and conversion to black carbon(charcoal[J]. Global Biogeochemical Cycles, 2003,1177(1):1020-1034.
    [23]周文昌,崔丽娟,王义飞,等.若尔盖高原退化湿地土壤有机碳储量[J].水土保持研究, 2017, 2244(5):27-32.
    [24]宫超,宋长春,谭稳稳,等.三江平原沼泽湿地垦殖对土壤微生物学性质影响研究[J].生态环境学报, 2015, 2244(6):972-977.
    [25]许延昭,马维伟,李广,等.尕海湿地植被退化过程中土壤轻重组有机碳动态变化特征[J].水土保持学报, 2018, 3322(3):205-211.
    [26]万忠梅,宋长春,杨桂生,等.三江平原湿地土壤活性有机碳组分特征及其与土壤酶活性的关系[J].环境科学学报, 2009, 29(2):406-412.
    [27]Li S, Zheng X, Liu C, et al. Influences of observation method,season, soil depth, land use and management practice on soil dissolvable organic carbon concentrations:A meta-analysis[J]. Science of the Total Environment, 2018, 63311-632:105-114.
    [28]崔东,闫俊杰,刘海军,等.伊犁河谷不同类型湿地土壤活性有机碳组分及其含量差异[J].生态学杂志, 2019, 38(7):2087-2093.
    [29]孙小琳,孔范龙,李悦,等.胶州湾滨海湿地枯落物分解对土壤活性有机碳含量及其三维荧光特性的影响[J].应用生态学报,2019, 3300(2):563-572.
    [30]肖烨,黄志刚,武海涛,等.三江平原不同湿地类型土壤活性有机碳组分及含量差异[J].生态学报, 2015, 3355(23):7625-7633.
    [31]张晓雅,胡益珩,安菁,等.若尔盖泥炭沼泽土壤中可溶性有机碳含量对降水变化的响应[J].湿地科学, 2018, 1166(4):546-551.
    [32]张会慧,王世标,王均睿,等.三江平原湿地不同利用方式对土壤理化性质及团聚体组成的影响[J].生态学杂志, 2019, 3388(6):1679-1687.
    [33]Mathers N J, Xu Z H. Solid-state13C NMR Spectroscopy characterization of soil organic matter under two contrasting residue management regimes in a 2-year-old pine plantation of subtropical Australia[J]. Geoderma, 2003, 11144(1/2):19-31.
    [34]Wang Q J, Zhang L, Zhang J C, et al. Effects of compost on the chemical composition of SOM in density andaggregate fractions from rice-wheat cropping systems as shown by solid-state13CNMR spectroscopy[J]. Journal of Plant Nutrition and Soil Science, 2012, 117755(6):920-930.
    [35]陶宝先,张保华,董杰,等.不同土地利用方式对寿光市农业土壤有机碳分子结构和稳定性的影响[J].生态环境学报, 2017,2266(10):1801-1806.
    [36]万斯昂,刘兴土,牟晓杰.双台河口四种类型湿地土壤中的碳、氮含量垂直分布特征[J].湿地科学, 2017, 1155(4):629-634.
    [37]Ma W W, Abdul R M A, Wang Y S, et al. Greenhouse gas emissions as influenced by wetland vegetation degradation along a moisture gradient on the eastern Qinghai-Tibet Plateau of NorthWest China[J]. Nutrient Cycling in Agroecosystems, 2018, 112(3):335-354.
    [38]杭子清,王国祥,刘金娥,等.互花米草盐沼土壤有机碳库组分及结构特征[J].生态学报, 2014, 3344(15):4175-4182.
    [39]杨慧,张连凯,曹建华,等.桂林毛村岩溶区不同土地利用方式土壤有机碳矿化及土壤碳结构比较[J].中国岩溶, 2011, 3300(4):410-416.