用户名: 密码: 验证码:
连续种植不同绿肥作物的耕层土壤团聚体中氮分布及其固持特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution and Sequestration of Nitrogen in Soil Aggregates under Continuous Cultivation of Green Manure Crops
  • 作者:张钦 ; 张爱华 ; 姚单君 ; 吴兴洪 ; 冉斌 ; 陈正刚 ; 朱青 ; 曹卫东
  • 英文作者:ZHANG Qin;ZHANG Ai-hua;YAO Dan-jun;WU Xin-hong;RAN Bin;CHEN Zheng-gang;ZHU Qing;CAO Wei-dong;Guizhou Institute of Soil and Fertilizer, Guizhou Institute of Agricultural Resources and Environment, GAAS, Scientific Observing and Experimental Station of Arable Land Conservation and Agriculture Environment, Ministry of Agriculture;Guizhou University;Agricultural Resources and Regional Planning,CAAS;
  • 关键词:全氮 ; 土壤团聚体氮 ; 绿肥 ; 分布 ; 固持
  • 英文关键词:Soil total nitrogen;;Aggregate nitrogen;;Green manure;;Distribution;;Sequestration
  • 中文刊名:土壤通报
  • 英文刊名:Chinese Journal of Soil Science
  • 机构:贵州省农业科学院土壤肥料研究所贵州省农业科学院农业资源与环境研究所农业部贵州耕地保育与农业环境科学观测试验站;贵州大学;中国农业科学院农业资源与农业区划研究所;
  • 出版日期:2019-06-06
  • 出版单位:土壤通报
  • 年:2019
  • 期:03
  • 基金:贵州省科学技术基金项目(黔科合LH字[2014]7702号);; 贵州省社发攻关项目(黔科合[2016]支撑2837);; 国家绿肥产业技术体系(CARS-22);; 公益性行业(农业)科研专项(201103005)资助
  • 语种:中文;
  • 页:79-86
  • 页数:8
  • CN:21-1172/S
  • ISSN:0564-3945
  • 分类号:S153.6;S152
摘要
为探讨连续种植绿肥对土壤团聚体中氮分布的影响以及其中氮的固持特征,以箭筈豌豆(Vicia sativa L.)、肥田萝卜(Raphanus sativus L.)、蓝花苕子(Vicia cracca L.)、毛叶苕子(Vicia villosa Roth)、光叶苕子(Vicia villosa var.)为对象开展研究。结果表明:光叶苕子能够显著提高土壤全氮含量。肥田萝卜、蓝花苕子提升耕层土壤团聚体各粒径中氮含量的效果较为明显,光叶苕子提升> 2 mm粒径土壤团聚体中氮含量的效果较为明显。随着粒径减小土壤团聚体氮含量也呈现下降的趋势,各粒径中氮的富集系数在1.24与0.89之间。在> 1 mm粒径中,几乎所有处理富集系数均大于1,处于积累状态,≥0.25 mm粒径的团聚体氮贡献率占了85%以上,其中> 5 mm粒径的氮贡献率最大,0.5~0.25 mm粒径的氮贡献率最小。连续种植绿肥,土壤全氮的积累随着各粒径土壤团聚体中氮含量的增加而增加,全氮与> 0.5 mm粒径的团聚体中氮含量显著正相关,且5~2 mm粒级土壤团聚体中氮的增加对土壤全氮的影响较为突出,连续种植绿肥促进了氮在大团聚体中的固持。
        The objective of this study was to investigate the effects of long-term cultivation of green manure crops(Clean tillage, Vicia sativa L., Raphanus sativus L., Vicia cracca L., Vicia villosa Roth, and Vicia villosa var.) on the distribution of nitrogen(N) in soil aggregates and its sequestration. The results showed that the content of soil total N was significantly increased under the cultivation of Vicia villosa var. The cultivation of Raphanus sativus L. and Vicia cracca L. increased obviously the content of aggregate N. And the N content in the ≥2 mm aggregate was increased under the cultivation of Vicia villosa var. The composition of aggregate N showed an increased tend with the aggregate sizes. The enrichment coefficient(EC) of aggregate N was between 1.24 and 0.89. The EC of > 1 mm aggregate N was nearly more than 1, which means N accumulation. The contribution of N in ≥0.25 mm aggregate to total N was more than 85%. It was the highest in the > 5 mm aggregates and differed among various green manure crops, while it was the lowest in the 0.5 ~ 0.25 mm aggregates. The long-term cultivation of green manure crops increased the content of aggregate N and then promoted the accumulation of soil total N. There was a positive correlation between the contents of soil total N and > 0.5 mm aggregate N. The increase of N in 5 ~ 2 mm aggregate had a great influence on the N accumulation in soil. Long-term cultivation of green manure crops promotes the N sequestration in macro-aggregates.
引文
[1]陈建国,田大伦,闫文德.土壤团聚体固碳研究进展[J].中南林业科技大学学报, 2011, 31(5):74-80
    [2] SIX J,BOSSUYT H,DEGRYZE S,et al.A history of research on the link between micro-aggregates,soil biota,and soil organic matter dynamics[J].Soil&Tillage Research, 2004, 79(1):7-31
    [3] GAOFEI G, ZHAOJUN L, FENLIAN G F, et a1. Soil biological activity and their seasonal variations in response to long-term application of organic and inorganic fertilizers[J]. Plant and Soil,2010, 326:31-44.
    [4] MIKHA M M, HERGERT G W, BENJAMIN J G, et al. Long-term manure impacts on soil aggregates and aggregate-associated carbon and nitrogen[J]. Soil and Water Management and Nitrogen, 2015, 79(2):626-636
    [5] ELLIOTT E T, CAMBARDELLA C A. Physical separation of soil organic matter[J].Agriculture Ecosystems&Environment,1991,34(1-4):407-419
    [6]魏朝富,谢德体,李保国.土壤有机无机复合体的研究进展[J].地球科学进展, 2003,18(2):221-227
    [7]刘晓利,何园球,李成亮,等.不同利用方式旱地红壤水稳性团聚体及其碳、氮、磷分布特征[J].土壤学报, 2009,46(02):255-262
    [8]李清华,王飞,林诚,等.长期施肥对黄泥田土壤微生物群落结构及团聚体组分特征的影响[J].植物营养与肥料学报,2015,21(06):1599-1606
    [9]刘中良,宇万太,周稱,等.长期施肥对土壤团聚体分布和养分含量的影响[J].土壤, 2011,43(5):720-728
    [10]胡宁,马志敏,蓝家程,等.石漠化山地植被恢复过程土壤团聚体氮分布及与氮素矿化关系研究[J].环境科学, 2015, 9(36):3411-3421
    [11]常新刚,黄国勤,熊云明,等.双季稻与黑麦草水旱轮作的产量和土壤理化性状分析[J].耕作与栽培, 2005, 4:16-17.
    [12]方勇,章红兵.南方红壤区种植黑麦草的效应研究[J].草业科学, 2005, 22(4):69-71.
    [13]姜培坤,徐秋芳,周国模,等.种植绿肥对板栗林土壤养分和生物学性质的影响[J].北京林业人学学报, 2007, 29(3):120-123.
    [14]张赛,王龙昌.保护性耕作对土壤团聚体及其有机碳含量的影响[J].水土保持学报, 2013, 27(4):263-267, 272.
    [15] ELLIOTT E T. Aggregate structure and carbon, nitrogen and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal, 1986, 50:627-633.
    [16]鲍士旦.土壤农化分析[M].北京:中国农业出版社, 2005.
    [17]渠佳慧,李立军,李晓婷.燕麦与箭筈豌豆不同行比例间作对饲草产量及土壤理化性状的影响[J].土壤通报, 2018, 49(5):1176-1183.
    [18] FRED E B, GRAUL E J. The Effect of soluble nitrogenous salts on nodule formation[J]. Agronomy Journal, 1916, 8(5):316-328.
    [19]严君,韩晓增,王守宇,等.不同形态氮对大豆根瘤生长及固氮的影响[J].大豆科学, 2009(4):674-677.
    [20]夏玄,龚振平.氮素与豆科固氮关系研究进展[J].东北农业大学学报, 2017, 48(1):1-10.
    [21] GAN Y, STULEN I, KEULEN H V, et al. Low concentrations of nitrate and ammonium stimulate nodulation and N2 fixation while inhibiting specific nodulation(nodule DW g-1 root dry weight)and specific N2 fixation(N2 fixed g-1 root dry weight)in soybean[J]. Plant and Soil, 2004, 258(1):281-292.
    [22]董守坤,刘丽君,孙聪姝,等.利用15N标记研究氮素水平对大豆根瘤生长的影响[J].植物营养与肥料学报, 2011(4):985-988.
    [23]黄志宏,黄维南.豆科茎瘤植物的结瘤、固氮和应用(综述)[J].亚热带植物通讯.1996,25(2):40-46.
    [24]于爱忠,黄高宝,柴强,等.耕作措施对冬小麦农田土壤团聚体分布及稳定性的影响[J].水土保持学报, 2011, 25(6):119-123.
    [25] RILLING M C, WRIGHT S F, EVINER V T. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation:comparing effects of five plant species[J]. Plant and Soil, 2002,238:325-333.
    [26] PENG S, GUO T, LIU G C. The effects of arbuscular mycorrhizal hyphal netmorks on soil in southwest China[J]. Soil Biology and Biochemistry, 2013, 57:411-417.
    [27]宋日,刘利,马丽艳,等.作物根系分泌物对土壤团聚体大小及其稳定性的影响[J].东北林业大学学报, 2009, 37(7):84-86.
    [28]鲁鸿佩,孙爱华.草田轮作对粮食作物的增产效应[J].草业科学, 2003, 20(4):10-13.
    [29]王晓凌,李凤民.作物轮作系统土壤微生物量与土壤轻组碳氮研究[J].水土保持学报, 2006, 20(4):132-135.
    [30]谢宏图.东北黑土有机碳、全氮空间分布及特性研究[D].北京:中国科学院, 2005.
    [31]陈山,杨峰,林杉,等.土地利用方式对红壤团聚体稳定性的影响[J].水土保持学报, 2012, 26(5):211-216.
    [32] ZHAO G Z, LIU Y Q, TIAN Y, et al. Preparation and properties of macromolecular slow-release fertilizer containing nitrogen, phosphorus and potassium[J]. Journal of polymer research, 2010, 17(1):119-125.
    [33] TISDALL J M, OADES J M. Organic matter and water-stable aggregate in soil[J]. J. soil Sci., 1982, 33(2):1141-1163.
    [34] OADES J M. Soil organic matter and structural stability:Mechanisms and implications for management[J]. Plant Soil,1984, 76:319-337.
    [35] ELLIOTT E T, COLEMAN D C. Let the soil work for us[J].Eco1. Bul1., 1988, 39:23-32.
    [36] SIX J, ELLIOTT E T, PAUSTIAN K, et a1. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil SCi. Soc. Am. J., 1998, 62:1367-l377.
    [37]胡宁.岩溶石漠化区植被恢复对土壤有机碳、氮积累与氮素矿化特征影响研究[D].重庆:西南大学, 2015.
    [38]杜臻杰,樊向阳,吴海卿,等.施用生物质炭和猪场沼液对潮土团聚体及氮素形态影响研究[J].灌溉排水学报, 2015, 9(34):20-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700