腾格里沙漠东南缘人工固沙植被区表层土壤有机碳矿化对凋落物添加的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of Topsoil Organic Carbon Mineralization to Litter Addition in the Revegetation Area in the Southeastern Fringe of the Tengger Desert
  • 作者:李云飞 ; 谢婷 ; 石万里 ; 李小军
  • 英文作者:Li Yunfei;Xie Ting;Shi Wanli;Li Xiaojun;Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences;University of Chinese Academy of Sciences;College of Forestry, Gansu Agricultural University;
  • 关键词:凋落物 ; 有机碳矿化 ; 腾格里沙漠 ; 土壤温度 ; 土壤水分
  • 英文关键词:litter;;organic carbon mineralization;;Tengger Desert;;soil temperature;;soil water contents
  • 中文刊名:中国沙漠
  • 英文刊名:Journal of Desert Research
  • 机构:中国科学院西北生态环境资源研究院沙坡头沙漠研究试验站;中国科学院大学;甘肃农业大学林学院;
  • 出版日期:2019-09-15
  • 出版单位:中国沙漠
  • 年:2019
  • 期:05
  • 基金:国家自然科学基金项目(41671111,41530746)
  • 语种:中文;
  • 页:204-213
  • 页数:10
  • CN:62-1070/P
  • ISSN:1000-694X
  • 分类号:Q948.1
摘要
土壤有机碳矿化是调控土壤碳库时空格局、土壤碳收支平衡和植物养分供应的重要过程,植物残体和凋落物分解释放CO_2直接影响着土壤有机碳矿化。研究了不同类型凋落物对腾格里沙漠东南缘建植于1956年的人工固沙植被区土壤有机碳矿化过程及其对水分和温度的响应特征。结果表明:凋落物添加显著促进了有机碳矿化,添加柠条锦鸡儿(Caragana korshinskii)、油蒿(Artemisia ordosica)、小画眉草(Eragrostis minor)凋落物后,CO_2-C最大矿化速率分别增大了6.94、5.17、3.46倍,0~5 cm层土壤是5~10 cm层土壤的1.09、1.55、1.22倍;CO_2-C累积释放量分别增加了3.73、3.38、2.34倍,0~5 cm层土壤是5~10 cm层土壤的1.17、1.30、1.57倍。凋落物对有机碳矿化的促进作用与温度和水分密切相关,25℃时,CO_2-C平均释放速率、最大释放速率、累积碳释放量分别是10℃的2.21、3.60、2.21倍,而含水量10%时,CO_2-C平均释放速率、最大释放速率和累积碳释放量分别是含水量5%时的1.25、1.20、1.25倍。相关性分析表明,凋落物碳氮含量、碳氮比、木质素比氮和土壤有机碳以及全氮是影响有机碳矿化的主要因子。凋落添加土壤后潜在可矿化碳表现为柠条锦鸡儿>油蒿>小画眉草>对照。凋落物添加显著促进了有机碳矿化过程及碳周转,植被恢复过程中草本植物凋落物的输入更有利于土壤碳固存,凋落物对土壤碳库的调控作用受土壤理化性质和水热等环境因子的共同作用影响。
        The mineralization of soil organic carbon is an important process that regulates the spatial and temporal pattern of soil carbon pool, balance of soil carbon budget, and nutrient availability for soil biota and plants, decomposition of plant residues and litter and releases CO_2 directly affects soil organic carbon mineralization(SOCM). SOCM process and its response to soil water content(SWC) and soil temperature(T_s) in the revegetation area of established in 1956 in the southeastern margin of the Tengger Desert were studied by different types of litter addition. The results showed that the addition of litter significantly promoted SOCM. After adding Caragana korshinskii, Artemisia ordosica litter and Eragrostis minor litter, the maximum rate of SOCM increased by 6.94, 5.17 times and 3.46 times respectively, the soil of 0-5 cm layer is 1.09, 1.55 and 1.22 times of the soil of 5-10 cm layer; the cumulative carbon release(CCR) increased by 3.73, 3.38 times and 2.34 times, and the soil of 0-5 cm layer is 1.17, 1.30 and 1.57 times of the soil of 5-10 cm layer. The effect of litter on SOCM was closely related to SWC and T_s. The average and maximum SOCM rate and CCR in 25 °C incubation were 2.21 times, 3.60 times and 2.21 times than great than those soil in 10 ℃, respectively. The average and maximum SOCM rate and CCR with 10% of SWC were 1.25 times, 1.20 times and 1.25 times than those with 5%. Litter organic carbon, litter nitrogen, Litter carbon to nitrogen ratio, Litter lignin to nitrogen ratio and soil organic carbon and nitrogen are the main factors affecting SOCM. The soil potential mineralizable carbon in different types litter addition was expressed as Caragana korshinskii>Artemisia ordosica>Eragrostis minor>Control. The addition of litter significantly promoted the process of SOCM and soil carbon turnover. The input of herbaceous litter during vegetation restoration was more conducive to soil carbon sequestration, and the regulation by litter on soil carbon pool attributes in combination with soil physicochemical properties and SWC and T_s.
引文
[1] Houerou H N L,Restoration E.Rehabilitation of arid and semiarid Mediterranean ecosystems in North Africa and West Asia:a review[J].Arid Soil Research and Rehabilitation,2000,14:3-14.
    [2] Li X R,Zhang Z S,Tan H J,et al.Ecological restoration and recovery in the wind-blown sand hazard areas of China:relationship between soil water and carring capacity for vegetation in the Tengger Desert[J].Science China Life Sciences,2014,57(5):539-548.
    [3] Schütt M,Borken W,Spott O,et al.Temperature sensitivity of C and N mineralization in temperate forest soils at low temperatures[J].Soil Biology and Biochemistry,2014,69:320-327.
    [4] Stielstra C M,Lohse K A,Chorover J,et al.Climatic and landscape influences on soil moisture are primary determinants of soil carbon fluxes in seasonally snowcovered forest ecosystems[J].Biogeochemistry,2015,1233:447-465.
    [5] 辜翔,张仕吉,刘兆丹,等.湖南东部植被恢复对土壤有机碳矿化的影响[J].植物生态学报,2018,42(12):1211-1224.
    [6] Ziegler S E,Billings S A,Lane C S,et al.Warming alters routing of labile and slower-turnover carbon through distinct microbial groups in boreal forest organic soils[J].Soil Biology and Biochemistry,2013,60:23-32.
    [7] Aerts R,Van Bodegom P M,Cornelissen J H C.Litter stoichiometric traits of plant species of high-latitude ecosystems show high responsiveness to global change without causing strong variation in litter decomposition[J].New Phytologist,2012,196(1):181-188.
    [8] 黄宗胜,喻理飞,符裕红.喀斯特森林植被自然恢复过程中土壤可矿化碳库特征[J].应用生态学报,2012,23:2165-2170.
    [9] 杨雪玲,陈群,周育智,等.不同土地利用类型对土壤有机碳矿化过程的影响[J].安徽农业科学,2017,45(4):110-114.
    [10] 王玉红,马天娥,魏艳春,等.黄土高原半干旱草地封育后土壤碳氮矿化特征[J].生态学报,2017,37(2):378-386.
    [11] Raich J W,Schlesinger W H.The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J].Tellus B,1992,44(2):81-99.
    [12] Tan Y,Chen J,Yan L,et al.Mass loss and nutrient dynamics during litter decomposition under three mixing treatments in a typical steppe in Inner Mongolia[J].Plant and Soil,2013,366(1/2):107-118.
    [13] 毕京东,李玉霖,宁志英,等.科尔沁沙地优势植物叶凋落物分解及碳矿化——凋落物质量的影响[J].中国沙漠,2016,36(1):85-92.
    [14] 杨红玲,李玉霖,宁志英,等.添加混合凋落物对沙丘草地土壤有机碳矿化的影响[J].生态学报,2019,39(7):2510-2519.
    [15] 卢晓蓉,尹艳,冯竞仙,等.不同添加量凋落物及生物质炭对土壤微生物群落结构的影响[J].环境科学学报,2019,39(9):3080-3089.
    [16] Mehnaz K R,Corneo P E,Keitel C,et al.Carbon and phosphorus addition effects on microbial carbon use efficiency,soil organic matter priming,gross nitrogen mineralization and nitrous oxide emission from soil[J].Soil Biology and Biochemistry,2019,134:175-186.
    [17] Parton W J,Schimel D S,Cole C V,et al.Analysis of factors controlling soil organic matter levels in Great Plains Grasslands[J].Soil Science Society of America Journal,1987,51:1173-1179.
    [18] Li L J,Zeng D H,Yu Z Y,et al.Impact of litter quality and soil nutrient availability on leaf decomposition rate in a semi-arid grassland of Northeast China[J].Journal of Arid Environments,2011,75(9):787-792.
    [19] Lin G G,Mao R,Zhao L,et al.Litter decomposition of a pine plantation is affected by species evenness and soil nitrogen availability[J].Plant and Soil,2013,373(1/2):649-657.
    [20] Li X J,Li X R,Wang X P,et al.Changes in soil organic carbon fractions after afforestation with xerophytic shrubs in the Tengger Desert,northern China[J].European Journal of Soil Science,2016,67:184-195.
    [21] Yang C,Liu N,Zhang Y J.Effects of aggregates size and glucose addition on soil organic carbon mineralization and Q10 values under wide temperature change conditions[J].European Journal of Soil Biology,2017,80:77-84.
    [22] 李顺姬,邱莉萍,张兴昌.黄土高原土壤有机碳矿化及其与土壤理化性质的关系[J].生态学报,2010,30(5):1217-1226.
    [23] 王莹,梁琼,栾景雨,等.不同人工林凋落物对土壤有机碳矿化特征的影响[J].北京农学院学报,2020,35(1) http://kns.cnki.net/kcms/detail/11.2156.S.20190626.1446.002.html
    [24] 孟庆涛,李玉霖,赵学勇,等.科尔沁沙地30种植物叶凋落物CO2释放量及释放速率的研究[J].中国沙漠,2007,27(6):960-967.
    [25] Crow S E,Lajtha K,Bowden R D,et al.Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest[J].Forest Ecology and Management,2009,258(10):2224-2232.
    [26] 吴庆标,王效科,欧阳志云.活性有机碳含量在凋落物分解过程中的作用[J].生态环境,2006(6):1295-1299.
    [27] Klotzbücher T,Kaiser K,Stepper C,et al.Long-term litter input manipulation effects on production and properties of dissolved organic matter in the forest floor of a Norway spruce stand[J].Plant and Soil,2012,355(1/2):407-416.
    [28] Hobbie S E.Nitrogen effects on decomposition:a five-year experiment in eight temperate sites[J].Ecology,2008,89(9):2633-2644.
    [29] Zhao H,Huang G,Ma J,et al.Decomposition of aboveground and root litter for three desert herbs:mass loss and dynamics of mineralnutrients[J].Biology and Fertility of Soils,2014,50(5):745-753.
    [30] Solly E F,Sch?ning I,Boch S,et al.Factors controlling decomposition rates of fine root litter in temperate forests and grasslands[J].Plant and Soil,2014,382(1/2):203-218.
    [31] 李玉霖,孟庆涛,赵学勇,等.科尔沁沙地植物成熟叶片性状与叶凋落物分解的关系[J].生态学报,2008,28(6):2486-2492.
    [32] 曲浩,赵学勇,赵哈林,等.科尔沁沙3种灌木凋落物分解速率及其与关键气象因子的关系[J].中国沙漠,2010,30(4):844-849.
    [33] 黄耀,刘世梁,沈其荣,等.环境因子对农业土壤有机碳分解的影响[J].应用生态学报,2002,13(6):709-714.
    [34] Bouma T J,Bryla D R.On the assessment of root and soil respiration for soils of different textures:interactions with soil moisture contents and soil CO2 concentrations[J].Plant and Soil,2000,227:215-221.
    [35] Martens D A.Plant residue biochemistry regulates soil carbon cycling and carbon sequestration[J].Soil Biology and Biochemistry,2000,32(3):361-369.
    [36] 张玲,张东来,毛子军.中国温带阔叶红松林不同演替系列土壤有机碳矿化特征[J].生态学报,2017,37:6370-6378.
    [37] Kuzyakov Y.How to link soil C pools with CO2 fluxes[J].Biogeosciences,2011,8:1523-1537.
    [38] 杨开军,杨万勤,贺若阳,等.川西亚高山3种典型森林土壤碳矿化特征[J].应用与环境生物学报,2017,23(5):851-856.
    [39] 张浩,吕茂奎,江军,等.侵蚀红壤区植被恢复对表层与深层土壤有机碳矿化的影响[J].水土保持学报,2016,30(1):244-249.
    [40] Schütt M,Borken W,Spott O,et al.Temperature sensitivity of C and N mineralization in temperate forest soils at low temperatures[J].Soil Biology and Biochemistry,2014,69:320-327.
    [41] 王海涛,张银太,何兴东,等.干旱区油蒿生物量凋落分解与土壤呼吸[J].中国沙漠,2007,27(3):455-459.