用户名: 密码: 验证码:
赤铁矿抑制硫酸盐废水厌氧消化产甲烷过程中硫化氢形成与机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Hematite on the Inhibition of Hydrogen Sulfide Formation and Its Mechanism During Anaerobic Digestion and Methanogenesis of Sulfate Wastewater
  • 作者:黄绍福 ; 叶捷 ; 周顺桂
  • 英文作者:HUANG Shao-fu;YE Jie;ZHOU Shun-gui;College of Resources and Environment,Fujian Agriculture and Forestry University;
  • 关键词:硫酸盐废水 ; 厌氧消化 ; 赤铁矿 ; 硫化氢 ; 硫平衡
  • 英文关键词:sulfate wastewater;;anaerobic digestion;;hematite;;hydrogen sulfide;;sulfur balance
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:福建农林大学资源与环境学院;
  • 出版日期:2018-11-15 17:58
  • 出版单位:环境科学
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金项目(51608121,41671264)
  • 语种:中文;
  • 页:339-346
  • 页数:8
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X703.1
摘要
为了实现高浓度硫酸盐废水厌氧消化过程中甲烷的高值化产出,本文探究了赤铁矿添加对硫酸盐废水厌氧消化系统中硫化氢形成的抑制效果与作用机制.以人工配制的硫酸盐废水为研究对象,考察不同赤铁矿投加量下高浓度硫酸盐废水的厌氧消化性能,并分析反应体系中硫元素的迁移转化途径.结果表明,未添加赤铁矿的反应器的厌氧消化启动时间及硫化氢浓度分别是0. 5 g·(30 mL)~(-1)赤铁矿添加组的1. 64倍及180倍.这说明添加赤铁矿不仅能够缩短厌氧消化的延迟时间,而且有效降低反应器中硫化氢的浓度.硫元素的动态平衡分析结果显示,添加0. 5 g·(30 mL)~(-1)赤铁矿反应器中固体硫含量占总硫的96. 9%. XPS结果进一步表明,赤铁矿添加主要是促废水中的S_(2-)以Fe S_2的形式固定.因此,赤铁矿的添加能够有效加速硫酸盐废水厌氧消化过程,同时降低反应器中硫化氢的浓度.
        In order to achieve the high value production of methane,this paper investigated the effect and mechanism of hematite on the inhibitation of the formation of hydrogen sulfide during the anaerobic digestion of high-concentration sulfate wastewater. Different dosages of hematite were added to artificially prepared sulfate wastewater to analyze the migration and transformation pathways of sulfur in the reaction system. The results showed that the delay time of the anaerobic digestion process and the hydrogen sulfide concentration in the control reactor were 1. 64 times and 180 times those in the reactor with the optimal hematite dosage of 0. 5 g·( 30 mL)~(-1),respectively. Thus,the addition of hematite effectively shortened the delay time and reduced the concentration of hydrogen sulfide.Dynamic equilibrium analysis of sulfur in different anaerobic digestion reactors showed that the solid sulfur content in the reactor accounted for 96. 9% of the total sulfur. XPS results further demonstrated that hematite mainly enhanced the fixation of S_(2-)in the form of Fe S_2. Therefore,the addition of hematite can effectively accelerate the anaerobic digestion of sulfate wastewater while reducing the concentration of hydrogen sulfide in the reactor.
引文
[1] Liu Z H,Maszenan A M,Liu Y,et al. A brief review on possible approaches towards controlling sulfate-reducing bacteria(SRB)in wastewater treatment systems[J]. Desalination and Water Treatment,2015,53(10):2799-2807.
    [2] Serrano A,Siles J A,Gutiérrez M C,et al. Improvement of the biomethanization of sewage sludge by thermal pre-treatment and co-digestion with strawberry extrudate[J]. Journal of Cleaner Production,2015,90:25-33.
    [3]席婧茹,刘素琴,李琳,等.硫酸盐还原型甲烷厌氧氧化菌群驯化及其群落特征[J].环境科学,2014,35(12):4602-4609.Xi J R,Liu S Q,Li L,et al. Acclimatization and characteristics of microbial community in sulphate-dependent anaerobic methane oxidation[J]. Environmental Science,2014,35(12):4602-4609.
    [4] Chen J L,Ortiz R,Steele T W J,et al. Toxicants inhibiting anaerobic digestion:a review[J]. Biotechnology Advances,2014,32(8):1523-1534.
    [5] Carlson H K,Kuehl J V,Hazra A B,et al. Mechanisms of direct inhibition of the respiratory sulfate-reduction pathway by(per)chlorate and nitrate[J]. ISME Journal,2014,9(6):1295-1305.
    [6] Dhar B R,Nakhla G,Ray M B. Techno-economic evaluation of ultrasound and thermal pretreatments for enhanced anaerobic digestion of municipal waste activated sludge[J]. Waste Management,2012,32(3):542-549.
    [7] Dhar B R,Elbeshbishy E,Hafez H,et al. Thermo-oxidative pretreatment of municipal waste activated sludge for volatile sulfur compounds removal and enhanced anaerobic digestion[J].Chemical Engineering Journal,2011,174(1):166-174.
    [8]徐婷,金艳青,李勇.常温下加装脱硫装置的MCAnMBR处理高硫酸盐有机废水试验[J].环境科学,2017,38(12):5132-5138.Xu T,Jin Y Q, Li Y. Methane cycle anaerobic membrane bioreactor with desulfurization for treating high sulfate organic wastewater at normal temperature[J]. Environmental Science,2017,38(12):5132-5138.
    [9] Su L H,Liu C W,Liang K K,et al. Performance evaluation of zero-valent iron nanoparticles(NZVI)for high-concentration H2S removal from biogas at different temperatures[J]. RSC Advances,2018,8(25):13798-13805.
    [10] Lin H W,Couvreur K,Donose B C,et al. Electrochemical production of magnetite nanoparticles for sulfide control in sewers[J]. Environmental Science&Technology,2017,51(21):12229-12234.
    [11]张玲,郑西来,佘宗莲,等. Fe Cl3及Al Cl3对中温厌氧消化系统产生H2S的抑制作用[J].环境工程学报,2015,9(12):5907-5914.Zhang L,Zheng X L,She Z L,et al. Inhibition effect of Fe Cl3and Al Cl3on H2S from sludge mesotherm anaerobic digestion system[J]. Chinese Journal of Environmental Engineering,2015,9(12):5907-5914.
    [12] Khanal S K,Huang J C. ORP-based oxygenation for sulfide control in anaerobic treatment of high-sulfate wastewater[J].Water Research,2003,37(9):2053-2062.
    [13] Lupitskyy R,Alvarez-Fonseca D,Herde Z D,et al. In-situ prevention of hydrogen sulfide formation during anaerobic digestion using zinc oxide nanowires[J]. Journal of Environmental Chemical Engineering,2018,6(1):110-118.
    [14]强虹,李玉友,裴梦富. COD/SO24-对青霉素菌渣厌氧消化影响[J].环境科学,2018,39(7):3443-3451.Qiang H,Li Y Y,Pei M F. Effect of COD/SO24-ratio on anaerobic digestion of penicillin bacterial residues[J].Environmental Science,2018,39(7):3443-3451.
    [15] Ye J, Hu A D, Ren G P, et al. Enhancing sludge methanogenesis with improved redox activity of extracellular polymeric substances by hematite in red mud[J]. Water Research,2018,134:54-62.
    [16] Almaadhede T S. Structural, optical, and morphological properties of the cadmium oxide thin film taif s. almaadhede[J].Al-Mustansiriyah Journal of Science,2018,28(2):179-183.
    [17] Du J K,Bao J G,Fu X Y,et al. Mesoporous sulfur-modified iron oxide as an effective fenton-like catalyst for degradation of bisphenol A[J]. Applied Catalysis B:Environmental,2016,184:132-141.
    [18]董慧峪,季民.剩余污泥厌氧消化甲烷生成势与产甲烷菌群多样性的比较研究[J].环境科学,2014,35(4):1421-1427.Dong H Y, Ji M. Comparative study on biological methane potential and methanogen biodiversity in the anaerobic digestion of excess sludge[J]. Environmental Science,2014,35(4):1421-1427.
    [19] Liu F H,Rotaru A E,Shrestha P M,et al. Promoting direct interspecies electron transfer with activated carbon[J]. Energy&Environmental Science,2012,5(10):8982-8989.
    [20] Park J H,Kang H J,Park K H,et al. Direct interspecies electron transfer via conductive materials:A perspective for anaerobic digestion applications[J]. Bioresource Technology,2018,254:300-311.
    [21] Zhang Y B,Feng Y H,Yu Q L,et al. Enhanced high-solids anaerobic digestion of waste activated sludge by the addition of scrap iron[J]. Bioresource Technology,2014,159:297-304.
    [22]刘承帅,韦志琦,李芳柏,等.游离态Fe(Ⅱ)驱动赤铁矿晶相重组的Fe原子交换机制:稳定Fe同位素示踪研究[J].中国科学:地球科学,2016,46(11):1542-1553.Liu C S,Wei Z Q,Li F B,et al. The Fe atom exchange mechanism in Fe(Ⅱ)-induced recrystallization of hematite:stable Fe isotope tracing study[J]. Scientia Sinica Terrae,2016,46(11):1542-1553.
    [23] Zhou Q Y,Jiang X,Li X,et al. The control of H2S in biogas using iron ores as in situ desulfurizers during anaerobic digestion process[J]. Applied Microbiology and Biotechnology,2016,100(18):8179-8189.
    [24] Liu C F,Yuan X Z,Zeng G M,et al. Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste[J]. Bioresource Technology,2008,99(4):882-888.
    [25]戴晓虎,于春晓,李宁,等.有机负荷对醋糟厌氧消化系统启动的影响[J].环境科学,2017,38(3):1144-1150.Dai X H,Yu C X,Li N,et al. Effects of organic loading rate on startup performance of anaerobic digestion with vinegar residues[J]. Environmental Science,2017,38(3):1144-1150.
    [26]陈炜婷,张鸿郭,陈永亨,等. pH、温度及初始铊浓度对硫酸盐还原菌脱铊的影响[J].环境工程学报,2014,8(10):4105-4109.Chen W T,Zhang H G,Chen Y H,et al. Effect of pH,temperature and initial concentration on thallium removal by sulfate-reducing bacteria[J]. Chinese Journal of Environmental Engineering,2014,8(10):4105-4109.
    [27] Yuan H P,Chen Y,Dai X H,et al. Kinetics and microbial community analysis of sludge anaerobic digestion based on Microdirect current treatment under different initial p H values[J].Energy,2016,116:677-686.
    [28] Yun Y M,Sung S,Shin H S,et al. Producing desulfurized biogas through removal of sulfate in the first-stage of a two-stage anaerobic digestion[J]. Biotechnology and Bioengineering,2017,114(5):970-979.
    [29] Yang H J,Shen J Q. Effect of ferrous iron concentration on anaerobic bio-hydrogen production from soluble starch[J].International Journal of Hydrogen Energy,2006,31(15):2137-2146.
    [30] Ye J, Hu A D, Ren G P, et al. Red mud enhances methanogenesis with the simultaneous improvement of hydrolysisacidification and electrical conductivity[J]. Bioresource Technology,2018,247:131-137.
    [31] Meng X S,Zhang Y B,Li Q,et al. Adding Fe0powder to enhance the anaerobic conversion of propionate to acetate[J].Biochemical Engineering Journal,2013,73:80-85.
    [32] Li L L,Tong Z H,Fang C Y,et al. Response of anaerobic granular sludge to single-wall carbon nanotube exposure[J].Water Research,2015,70:1-8.
    [33] Yan L,Ye J,Zhang P Y,et al. Hydrogen sulfide formation control and microbial competition in batch anaerobic digestion of slaughterhouse wastewater sludge:effect of initial sludge pH[J].Bioresource Technology,2018,259:67-74.
    [34] Zhang J X,Zhang Y B,Chang J H,et al. Biological sulfate reduction in the acidogenic phase of anaerobic digestion under dissimilatory Fe(III)--reducing conditions[J]. Water Research,2013,47(6):2033-2040.
    [35]赵阳国,任南琪,王爱杰,等.铁元素对硫酸盐还原过程的影响及微生物群落响应[J].中国环境科学,2007,27(2):199-203.Zhao Y G,Ren N Q,Wang A J,et al. The influence of Fe elements on sulfate reduction process and the response of microbial community[J]. China Environmental Science,2007,27(2):199-203.
    [36] Higgins M J,Chen Y C,Yarosz D P,et al. Cycling of volatile organic sulfur compounds in anaerobically digested biosolids and its implications for odors[J]. Water Environment Research,2006,78(3):243-252.
    [37] Li X B,Li C Y,Peng Z H,et al. Interaction of sulfur with iron compounds in sodium aluminate solutions[J]. Transactions of Nonferrous Metals Society of China,2015,25(2):608-614.
    [38] Perret N,Alexander A M,Hunter S M,et al. Synthesis,characterisation and hydrogenation performance of ternary nitride catalysts[J]. Applied Catalysis A:General,2014,488:128-137.
    [39] Liang C H,Wang H,Huang N B. Effects of sulphate-reducing bacteria on corrosion behaviour of 2205 duplex stainless steel[J]. Journal of Iron and Steel Research,International,2014,21(4):444-450.
    [40] Sheng G D, Alsaedi A, Shammakh W, et al. Enhanced sequestration of selenite in water by nanoscale zero valent iron immobilization on carbon nanotubes by a combined batch,XPS and XAFS investigation[J]. Carbon,2016,99:123-130.
    [41] Sun Q Y,Sheng Y Q,Yang J,et al. Dynamic characteristics of sulfur,iron and phosphorus in coastal polluted sediments,north China[J]. Environmental Pollution,2016,219:588-595.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700