用户名: 密码: 验证码:
土著AMF与玉米/大豆间作对红壤径流氮形态变化的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of Native Arbuscualr Mycorrhizal Fungi and Maize/Soybean Intercropping to Nitrogen Forms Changes in Runoff on Red Soil
  • 作者:李婷 ; 张丽 ; 李朝 ; 张乃明 ; 岳献荣 ; 刀博福 ; 夏运生
  • 英文作者:LI Ting;ZHANG Li;LI Zhaoli;ZHANG Naiming;YUE Xianrong;DAO Bofu;XIA Yunsheng;Yunnan Agricultural University;Yunnan Engineering Laboratory of Soil Fertility and Pollution Remediation;
  • 关键词:土著丛枝菌根真菌 ; 间作 ; 红壤 ; 氮形态
  • 英文关键词:native arbuscular mycorrhizal fungi(AMF);;intercropping;;red soil;;nitrogen forms
  • 中文刊名:水土保持学报
  • 英文刊名:Journal of Soil and Water Conservation
  • 机构:云南农业大学;云南省土壤培肥与污染修复工程实验室;
  • 出版日期:2019-10-15
  • 出版单位:水土保持学报
  • 年:2019
  • 期:05
  • 基金:国家自然科学基金项目(41561057);; 院士专家工作站项目(2015IC022);; 云南农业大学土壤资源利用与保护省创新团队开放基金项目(2015HC018)
  • 语种:中文;
  • 页:23-29
  • 页数:7
  • CN:61-1362/TV
  • ISSN:1009-2242
  • 分类号:S157.43;X52
摘要
为了研究土著丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)与间作模式对坡耕地红壤径流氮形态变化的响应,通过自然降雨条件下的径流小区模拟试验,设置不同种植模式(单作玉米、玉米/大豆间作、单作大豆)和不同菌根处理(抑菌(喷施苯菌灵)、未抑菌)进行研究。根据2017年6—9月采集的6次径流水样,分析比较菌根与间作复合处理下径流氮形态变化迁移特征。结果表明:在6次取样时间内,地表径流总氮浓度呈先上升后下降的趋势,硝态氮浓度呈先上升后下降再上升的趋势,而铵态氮浓度则表现出整体下降的趋势,并趋于平缓。所有复合处理中,间作-未抑菌处理的径流总氮浓度最低,较单作玉米-抑菌与单作大豆-抑菌处理显著降低35.0%和42.1%。无论何种种植模式,未抑菌处理的径流硝态氮浓度均明显低于抑菌处理,其中间作-未抑菌处理的径流硝态氮浓度较抑菌处理下的单作玉米与单作大豆处理显著降低,降幅分别为26.2%和33.9%。无论是否抑菌,间作处理的径流铵态氮浓度均低于单作玉米与单作大豆处理,间作-未抑菌处理下其浓度最低,较单作玉米-抑菌与单作大豆-抑菌处理明显降低34.8%和28.2%。由此可见,土著AMF与玉米/大豆间作对径流氮流失具有一定的协同削减潜力。
        In order to study the response of native arbuscular mycorrhizal fungi(AMF) and intercropping patterns to nitrogen(N) forms changes in runoff on red soil, different planting patterns(mono-maize, maize/soybean intercropping, mono-soybean) and different mycorrhizal treatments(mycorrhizal inhibition, none mycorrhizal inhibition) were designed by simulating runoff experiment under natural rainfall. The migration characteristics of N of different forms in runoff under the combined treatments of mycorrhizal and intercropping were analyzed using the six runoff water samples collected from June to September in 2017. The results showed that during the sampling times, the total N concentrations in runoff increased firstly and then decreased, while the concentrations of nitrate N showed a trend of increasing firstly, then decreasing and increasing again, and the ammonium N concentrations decreased firstly and leveled off then. Under all combined treatments, the total N concentrations in runoff was the lowest under the intercropping-uninhibited treatment, which was about 35.0% and 42.1% lower than those of mono-maize and mono-soybean under mycorrhizal inhibition treatments respectively. Regardless of the planting modes, the concentrations of nitrate N in runoff under the uninhibited treatment was lower than that of the inhibited treatments, which were significantly lower than those of mono-maize and mono-soybean under mycorrhizal inhibition treatments, the reduction rate were 26.2% and 33.9% respectively. Regardless of whether the mycorrhizal inhibition was applied or not, the concentrations of ammonium N in runoff with intercropping treatment were lower than those of mono treatments, which was the lowest under intercropping-uninhibited treatment. Compared with mono-corn and mono-soybean under mycorrhizal inhibition treatments, the reductions were 34.8% and 28.2% respectively. These results indicated that native AMF and intercropping treatments had a certain synergistic reduction potential for runoff nitrogen loss on red soil.
引文
[1] 陈永亮,陈保冬,刘蕾,等.丛枝菌根真菌在土壤氮素循环中的作用[J].生态学报,2014,34(17):4807-4815.
    [2] 朱兆良,金继运.保障我国粮食安全的肥料问题[J].植物营养与肥料学报,2013,19(2):259-273.
    [3] 凌德,李婷,王火焰,等.施用方式和氮肥种类对水稻土中氮素迁移的影响效应[J].土壤,2015,47(3):478-482.
    [4] Valkama E,Salo T,Esala M,et al.Nitrogen balances and yields of spring cereals as affected by nitrogen fertilization in northern conditions:A meta-analysis [J].Agriculture,Ecosystems & Environment,2013,164:1-13.
    [5] Murphy T,Dougall C,Burger P,et al.Runoff water quality from dryland cropping on Vertisols in central Queensland,Australia [J].Agriculture,Ecosystems & Environment,2013,180:21-28.
    [6] 国家统计局.第一次全国污染源普查公报[EB/OL].(2018-12-30)[2010-02-11].http://www.stats.gov.cn/tjij/tigb/quigb/qgqujgb/201002/I20100211 30641.html.
    [7] Janke B D,Finlay J C,Hobbie S E,et al.Contrasting influences of stormflow and baseflow pathways on nitrogen and phosphorus export from an urban watershed [J].Biogeochemistry,2014,121(1):209-228.
    [8] 冯固,张福锁,李晓林,等.丛枝菌根真菌在农业生产中的作用与调控[J].土壤学报,2010,47(5):995-1004.
    [9] 王浩,方燕,刘润进,等.丛枝菌根中养分转运、代谢、利用与调控研究的最新进展[J].植物生理学报,2018,54(11):1645-1658.
    [10] Heijden M G A V D.Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems [J].Ecology,2010,91(4):1163-1171.
    [11] Marschner H,Dell B.Nutrient uptake in mycorrhizal symbiosis [J].Plant and Soil,1994,159(1):89-102.
    [12] 彭思利,申鸿,袁俊吉,等.丛枝菌根真菌对中性紫色土土壤团聚体特征的影响[J].生态学报,2009,31(2):498-505.
    [13] 赵平,郑毅,汤利,等.小麦蚕豆间作施氮对小麦氮素吸收、累积的影响[J].中国生态农业学报,2010,18(4):742-747.
    [14] 张德,龙会英,金杰,等.豆科与禾本科牧草间作的生长互作效应及对氮、磷养分吸收的影响[J].草业学报,2018,27(10):15-22.
    [15] Li Y,Ran W,Zhang R,et al.Facilitated legume nodulation,phosphate uptake and nitrogen transfer by arbuscular inoculation in an upland rice and mung bean intercropping system [J].Plant and Soil,2009,315(1/2):285-296.
    [16] Li C J,Li Y Y,Yu C B,et al.Crop nitrogen use and soil mineral nitrogen accumulation under different crop combinations and patterns of strip intercropping in northwest China [J].Plant and Soil,2011,342(1/2):221-231.
    [17] 苏本营,陈圣宾,李永庚,等.间套作种植提升农田生态系统服务功能[J].生态学报,2013,33(14):4505-4514.
    [18] 陈小强,范茂攀,王自林,等.不同种植模式对作物根系固土拉力特性的影响[J].水土保持研究,2017,24(5):144-148,156.
    [19] 张丽,贾广军,夏运生,等.菌根和间作对滇池流域红壤磷素迁移的影响[J].环境科学研究,2015,28(5):760-766.
    [20] 国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002:254-285.
    [21] Montesinos N A,Miguel V,José I Q,et al.Soil fungi promote nitrogen transfer among plants involved in long-lasting facilitative interactions [J].Perspectives in Plant Ecology Evolution & Systematics,2016,18:45-51.
    [22] Hodge A,Campbell C D,Fitter A H.An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material [J].Nature,2001,413(6853):297-299.
    [23] 金海如,张萍华,蒋冬花.同位素示踪研究丛枝菌根真菌吸收不同氮素并向寄主植物输运的机理[J].土壤学报,2011,48(4):888-892.
    [24] 彭思利,申鸿,张宇亭,等.不同丛枝菌根真菌侵染对土壤结构的影响[J].生态学报,2012,32(3):863-870.
    [25] 叶佳舒,李涛,胡亚军,等.干旱条件下AM真菌对植物生长和土壤水稳定性团聚体的影响[J].生态学报,2013,33(4):1080-1090.
    [26] 张雪.菌根技术在控制稻田氮磷流失中的应用[D].哈尔滨:哈尔滨工业大学,2011.
    [27] 侯云鹏,杨晓丹,杨建,等.不同施肥模式下玉米氮、磷、钾吸收利用特性研究[J].玉米科学,2017,25(5):128-135.
    [28] 梁慧珍,董薇,许兰杰,等.不同氮磷钾处理大豆苗期主根长和侧根数的QTL定位分析[J].中国农业科学,2017,50(18):3450-3460.
    [29] 冯小杰,郑子成,李廷轩.紫色土区坡耕地玉米季地表径流及其氮素流失特征[J].水土保持学报,2017,31(1):43-48,54.
    [30] 马心灵,朱启林,耿川雄,等.不同氮水平下作物养分吸收与利用对玉米马铃薯间作产量优势的贡献[J].应用生态学报,2017,28(4):1265-1273.
    [31] 赵乾旭,史静,夏运生,等.AMF与隔根对紫色土上玉米||大豆种间氮竞争的影响[J].中国农业科学,2017,50(14):2696-2705.
    [32] 李隆.间套作强化农田生态系统服务功能的研究进展与应用展望[J].中国生态农业学报,2016,24(4):403-415.
    [33] 马志鹏,范茂攀,陈小强,等.间作模式下作物根系与坡耕地红壤抗蚀性的关系[J].水土保持学报,2016,30(4):68-73.
    [34] 叶优良,李隆,索东让.小麦/玉米和蚕豆/玉米间作对土壤硝态氮累积和氮素利用效率的影响[J].生态环境,2008,17(1):377-383.
    [35] 钟雄,张丽,张乃明,等.滇池流域坡耕地土壤氮磷流失效应[J].水土保持学报,2018,32(3):42-47.
    [36] 赵乾旭,史静,张仕颖,等.土著从枝菌根真菌(AMF)与不同形态氮对紫色土间作大豆生长及氮利用的影响[J].菌物学报,2017,36(7):983-995.
    [37] 汪新月,史静,岳献荣,等.接种AMF与间作对红壤上玉米和大豆种间氮素竞争的影响[J].菌物学报,2017,36(7):972-982.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700