用户名: 密码: 验证码:
新建铅蓄电池集聚区对周边土壤环境的影响:基于重金属空间特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impact of Newly Build Lead-Acid Battery Agglomeration Area on the Surrounding Soil Environment:A Study Based on the Spatial Characteristics of Heavy Metals
  • 作者:丁亚丽 ; 廖敏 ; 方至萍 ; 陈树森 ; 张云 ; 郭佳雯 ; 梁雨琦
  • 英文作者:DING Ya-li;LIAO Min;FANG Zhi-ping;CHEN Shu-sen;ZHANG Yun;GUO Jia-wen;LANG Yu-qi;College of Environmental and Resource Sciences,Zhejiang University;Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment;Environmental Monitoring Station of Changxing County,Zhejiang Province;
  • 关键词:铅蓄电池集聚区 ; 土壤重金属 ; 污染评价 ; 空间分布 ; 源解析
  • 英文关键词:lead-acid battery agglomeration area;;soil heavy metals;;pollution assessment;;spatial distribution;;source analysis
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:浙江大学环境与资源学院;浙江省农业资源与环境实验室;浙江省长兴县环境监测站;
  • 出版日期:2019-04-28 15:38
  • 出版单位:环境科学
  • 年:2019
  • 期:09
  • 基金:国家自然科学基金项目(41571226);; 国家重点研发计划项目(2018YFC1800403)
  • 语种:中文;
  • 页:398-406
  • 页数:9
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X53;X76
摘要
为探明浙北某乡镇经提升改造后一新建铅蓄电池集聚区运行7a后是否对周边土壤环境存在影响,采集该铅蓄电池集聚区周边表层土壤(0~20 cm) 76份,测定了土壤中汞(Hg)、砷(As)、铜(Cu)、锌(Zn)、铅(Pb)、镉(Cd)、镍(Ni)和铬(Cr)这8种重金属含量,并基于集聚区内、距集聚区边界50、450和850 m的空间距离,采用单因子指数法、内梅罗综合污染指数法及潜在生态风险指数法对土壤环境质量进行了评价,然后利用地统计方法分析了重金属空间分布特征,并结合相关性分析确定了对土壤环境造成影响的重金属的来源.结果表明,与当地平均背景值相比,8种重金属元素中Hg、Zn和Pb在所有空间尺度下的平均含量均高于其对应背景值,对Cd而言,除集聚区内,其余空间尺度下的Cd平均含量均大于其背景值,As只有距边界50m处的平均含量大于其背景值,而其他元素在所有空间距离下的平均含量均低于其对应背景值,其中Hg和Cd存在高度空间变异,而其他元素含量空间变异不明显,说明区域活动的影响主要集中在Hg和Cd上,且两者的含量随集聚区距离外延而增加.出现超出农用地土壤污染风险筛选值点位的元素主要为Hg和Cd,其主要分布在集聚区外450 m和850 m处,其中Hg在对应距离下超出风险筛选值的点位占33. 33%和38. 89%,Cd分别占27. 78%和55. 56%,且两者的空间分布特征与其含量一致,而其他元素中仅有Zn和Pb存在零星点位超出风险筛选值,且总体上无明显空间特征.由8种重金属元素对土壤的综合污染风险分析可知,Cd是造成土壤综合污染风险的主要来源,由于其贡献使850 m处土壤处于警戒状态(贡献率为36. 73%).土壤的生态风险主要出现在集聚区外450 m和850 m处,处于中等生态风险水平,其中生态风险主要来自Hg和Cd,Hg在对应距离下的贡献率分别为46. 30%和39. 37%,Cd分别为38. 98%和49. 30%,说明区域活动使Hg和Cd成为影响研究区土壤质量的主要元素.经地统计和多元统计分析表明,Hg和Cd含量呈现出在当地主风向(东北-西南)轴上由集聚区外围向内扩散的特征,且两者的主要来源为集聚区外围企业的燃煤活动.因此,新建的铅蓄电池集聚区运行7a后并未对集聚区及周边土壤重金属的集聚造成明显影响.
        To determine whether the newly built lead-acid battery agglomeration area in a town in northern Zhejiang had an impact on the surrounding soil environment after seven years of operation,76 samples of surface soil around the lead-acid battery concentration area were collected,and the contents of Hg,As,Cu,Zn,Pb,Cd,Ni,and Cr in the soil were determined. Based on the spatial distance of the agglomeration area and 50,450,and 850 m from the agglomeration area boundary,the soil environmental quality was evaluated using the single factor index,Nemerow comprehensive pollution index,and potential ecological risk index methods. The spatial distribution characteristics of the heavy metals were analyzed using the geostatistical method,and the sources of heavy metals affecting the soil environment were determined by correlation analysis. The results showed that the average contents of Hg,Zn,and Pb in eight heavy metals were higher than their corresponding background values at all spatial scales. The average Cd content in spatial scales other than the agglomeration area was larger than its background value. Only As at 50 m was greater than its background value,whereas the average content of other elements at all spatial distances was lower than their corresponding background values. The spatial variability was high for Hg and Cd but not obvious for other elements. This implies that the influence of regional activities was concentrated mainly on Hg and Cd; the content of both increased with distance from the agglomeration area. Hg and Cd exceeded the risk screening values and were distributed mainly at 450 m and 850 m; 33. 33% and 38. 89% Hg points and 27. 78% and 55. 56% Cd points were observed at these distances,respectively. The spatial distribution characteristics of Hg and Cd were consistent with their contents; only Zn and Pb had scattered points that exceeded the risk screening values and generally no obvious spatial distribution characteristics. According to the risk analysis of soil comprehensive pollution caused by the eight heavy metals,Cd was the main source of soil comprehensive pollution risk at a contribution rate of 36. 73%,which caused the soil at 850 m to be in a state of alert. Soil ecological risk at a medium level occurred mainly at 450 m and 850 m outside the agglomeration area from Hg and Cd. The contribution rates to the soil quality at these distances were 46. 30% and 39. 37% for Hg and 38. 98% and 49. 30% for Cd,respectively. This indicates that regional activities caused Hg and Cd to be the main elements affecting soil quality in the study area. The results of geostatistics and multivariate statistical analysis showed that Hg and Cd were diffused inward from the periphery of the agglomeration area on the axis of the local main wind direction( northeast-southwest),and the main sources of both were coal-burning activities of enterprises in the periphery of the agglomeration area. In summary,the newly build lead-acid battery agglomeration area has not significantly affected the accumulation of heavy metals in the agglomeration area and in the surrounding soil after seven years of operation.
引文
[1]郑立保,陈卫平,焦文涛,等.某铅蓄电池厂土壤中铅的含量分布特征及生态风险[J].环境科学,2013,34(9):3669-3674.Zheng L B, Chen W P, Jiao W T, et al. Distribution characteristics and ecological risk of Pb in soils at a lead battery plant[J]. Environmental Science, 2013, 34(9):3669-3674.
    [2]孙荣基,陈志莉,盛利伟.铅蓄电池厂遗留场地污染分析与风险评价[J].西南大学学报(自然科学版),2017,39(8):146-152.Sun R J,Chen Z L,Sheng L W. Pollution analysis and risk assessment of the remaining site of a relocated lead acid battery factory[J]. Journal of Southwest University(Natural Science Edition),2017,39(8):146-152.
    [3]环境保护部.关于加强铅蓄电池及再生铅行业污染防治工作的通知[EB/OL]. http://www. mee. gov. cn/gkml/hbb/bwj/201105/t20110519_210865. htm,2011-05-18.
    [4] Chen L G,Xu Z C,Liu M,et al. Lead exposure assessment from study near a lead-acid battery factory in China[J]. Science of the Total Environment,2012,429:191-198.
    [5]刘庚,牛俊杰,张朝,等.某铅酸蓄电池污染场地表层土壤重金属Pb空间分布预测研究[J].环境科学,2014,35(12):4712-4719.Liu G,Niu J J,Zhang C,et al. Spatial distribution prediction of surface soil Pb in a battery contaminated site[J]. Environmental Science,2014,35(12):4712-4719.
    [6]李锋,刘思源,李艳,等.工业发达城市土壤重金属时空变异与源解析[J].环境科学,2019,40(2):934-944.Li F,Liu S Y,Li Y,et al. Spatiotemporal variability and source apportionment of soil heavy metals in a industrially developed city[J]. Environmental Science,2019,40(2):934-944.
    [7]吕占禄,张金良,陆少游,等.某区生活垃圾焚烧发电厂周边及厂区内土壤中重金属元素的污染特征及评价[J].环境科学,2019,40(5):2483-2492.LüZ L,Zhang J L,Lu S Y,et al. Pollution characteristics and evaluation of heavy metal pollution in surface soil around a municipal solid waste incineration power plant[J].Environmental Science,2019,40(5):2483-2492.
    [8] Moghtaderi T,Mahmoudi S,Shakeri A,et al. Heavy metals contamination and human health risk assessment in soils of an industrial area,Bandar Abbas-South Central Iran[J]. Human and Ecological Risk Assessment:An International Journal,2018, 24(4):1058-1073, doi:10. 1080/10807039. 2017. 1405723.
    [9]梁雅雅,易筱筠,党志,等.某铅锌尾矿库周边农田土壤重金属污染状况及风险评价[J].农业环境科学学报,2019,38(1):103-110.Liang Y Y,Yi X J,Dang Z,et al. Pollution and risk assessment of heavy metals in agricultural soils around a Pb-Zn tailing pond[J]. Journal of Agro-Environment Science,2019,38(1):103-110.
    [10] Spahi'c M P, Sakan S, Cvetkovi'c, et al. Assessment of contamination,environmental risk,and origin of heavy metals in soils surrounding industrial facilities in Vojvodina,Serbia[J].Environmental Monitoring and Assessment,2018,190:208,doi:10. 1007/s10661-018-6583-9.
    [11] Zhang K,Qiang C D,Liu J. Spatial distribution characteristics of heavy metals in the soil of coal chemical industrial areas[J].Journal of Soils and Sediments,2018,18(5):2044-2052.
    [12]何博,赵慧,王铁宇,等.典型城市化区域土壤重金属污染的空间特征与风险评价[J].环境科学,2019,40(6):2869-2876.He B,Zhao H,Wang T Y,et al. Spatial distribution and risk assessment of heavy metals in soils from a typical urbanized area[J]. Environmental Science,2019,40(6):2869-2876.
    [13]杨磊,熊黑刚.新疆准东煤田土壤重金属来源分析及风险评价[J].农业工程学报,2018,34(15):273-281.Yang L,Xiong H G. Soil heavy metal sources analysis and risk evaluation of Zhundong coal mine in Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(15):273-281.
    [14]付亚星,常春平,王仁德,等.铅蓄电池厂周围土壤重金属空间分布特征及潜在风险评价[A].见:2013北京国际环境技术研讨会论文集[C].北京:中国环境科学学会,北京科技大学,2013. 270-276.
    [15]奚旦立,孙裕生,刘秀英.环境监测[M].(第三版).北京:高等教育出版社,2004.
    [16]杜瑞英,文典,赵沛华,等.农田土壤重金属污染主要来源识别研究[J].农产品质量与安全,2017,(6):61-64.Du R Y,Wen D,Zhao P H,et al. Identification of main sources of heavy metal pollution in farmland soil[J]. Quality and Safety of Agro-Products,2017,(6):61-64.
    [17] GB 15618-2018,土壤环境质量农用地土壤污染风险管控标准(试行)[S]. 2018.
    [18] Hakanson L. An ecological risk index for aquatic pollution control. A sedimentological approach[J]. Water Research,1980,14(8):975-1001.
    [19]范明毅,杨皓,黄先飞,等.典型山区燃煤型电厂周边土壤重金属形态特征及污染评价[J].中国环境科学,2016,36(8):2425-2436.Fan M Y,Yang H,Huang X F,et al. Chemical forms and risk assessment of heavy metals in soils around a typical coal-fired power plant located in the mountainous area[J]. China Environmental Science,2016,36(8):2425-2436.
    [20]王金霞,罗乐,陈玉成,等.三峡库区库尾典型农用地土壤重金属污染特征及潜在风险[J].农业环境科学学报,2018,37(12):2711-2717.Wang J X,Luo L,Chen Y C,et al. The characteristics and potential risk of heavy metals pollution in farmland soil of an agricultural land in the Three Gorges Reservoir area[J]. Journal of Agro-Environment Science,2018,37(12):2711-2717.
    [21]李春芳,曹见飞,吕建树,等.不同土地利用类型土壤重金属生态风险与人体健康风险[J].环境科学,2018,39(12):5628-5638.Li C F,Cao J F,LüJ S,et al. Ecological risk assessment of soil heavy metals for different types of land use and evaluation of human health[J]. Environmental Science,2018,39(12):5628-5638.
    [22]郭彦海,孙许超,张士兵,等.上海某生活垃圾焚烧厂周边土壤重金属污染特征、来源分析及潜在生态风险评价[J].环境科学,2017,38(12):5262-5271.Guo Y H,Sun X C,Zhang S B,et al. Pollution characteristics,source analysis and potential ecological risk assessment of heavy metals in soils surrounding a municipal solid waste incineration plant in Shanghai[J]. Environmental Science,2017,38(12):5262-5271.
    [23]范允慧,王艳青.浙江省四大平原区土壤元素背景值特征[J].物探与化探,2009,33(2):132-134.Fan Y H, Wang Y Q. Background characteristics of soil elementsin four plains of Zhejiang province[J]. Geophysical and Geochemical Exploration,2009,33(2):132-134.
    [24] Mandi'c-Rajˇc evi'c S,Bulat Z,Matovi'c V,et al. Environmental and take-home lead exposure in children living in the vicinity of a lead battery smelter in Serbia[J]. Environmental Research,2018,167:725-734.
    [25] Afolayan A O. Accumulation of heavy metals from battery waste in topsoil,surface water,and garden grown maize at Omilende area,Olodo,Nigeria[J]. Global Challenges,2018,2(3):170090.
    [26]刘鹏,胡文友,黄标,等.大气沉降对土壤和作物中重金属富集的影响及其研究进展[J].土壤学报,2019,56(5),doi:10. 11766/trxb201812130538.Liu P,Hu W Y,Huang B,et al. Advancement in researches on effect of atmospheric deposition on heavy metals accumulation in soils and crops[J]. Acta Pedologica Sinica,2019,56(5),doi:10. 11766/trxb201812130538.
    [27]杨之江,陈效民,景峰,等.基于GIS和地统计学的稻田土壤养分与重金属空间变异[J].应用生态学报,2018,29(6):1893-1901.Yang Z J,Chen X M,Jing F,et al. Spatial variability of nutrients and heavy metals in paddy field soils based on GIS and geostatistics[J]. Chinese Journal of Applied Ecology,2018,29(6):1893-1901.
    [28]刘硕,吴泉源,曹学江,等.龙口煤矿区土壤重金属污染评价与空间分布特征[J].环境科学,2016,37(1):270-279.Liu S,Wu Q Y,Cao X J,et al. Pollution assessment and spatial distribution characteristics of heavy metals in soils of coal mining area in Longkou city[J]. Environmental Science,2016,37(1):270-279.
    [29]郭颖,李玉冰,薛生国,等.广西某赤泥堆场周边土壤重金属污染风险[J].环境科学,2018,39(7):3349-3357.Guo Y,Li Y B,Xue S G,et al. Risk analysis of heavy metal contamination in farmland soil around a bauxite residue disposal area in Guangxi[J]. Environmental Science,2018,39(7):3349-3357.
    [30] Zhang Y X, Wang M, Huang B, et al. Soil mercury accumulation,spatial distribution and its source identification in an industrial area of the Yangtze Delta,China[J]. Ecotoxicology and Environmental Safety,2018,163:230-237.
    [31]肖武,隋涛,王鑫,等.巢湖流域典型农田土壤重金属污染评价与地理探测分析[J].农业机械学报,2018,49(7):144-152.Xiao W,Sui T,Wang X,et al. Assessment and geographical detection of heavy metal pollution in typical farmland soil in Chaohu lake basin[J]. Transactions of the Chinese Society for Agricultural,2018,49(7):144-152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700