用户名: 密码: 验证码:
氧化石墨烯/类水滑石基复合催化剂的可控制备及其催化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Controllable preparation and catalytic performance of graphene oxide/hydrotalcite based composite catalysts
  • 作者:王心宇 ; 杨新宇 ; 苗雨欣 ; 刘星遇 ; 陈文婷 ; 赵震
  • 英文作者:Wang Xinyu;Yang Xinyu;Miao Yuxin;Liu Xingyu;Chen Wenting;Zhao Zhen;Institute of Catalysis for Energy and Environment,College of Chemistry and Chemical Engineering,Shenyang Normal University;State Key Laboratory of Heavy Oil Processing,China University of Petroleum;
  • 关键词:催化化学 ; 类水滑石 ; 氧化石墨烯 ; 纳米复合物 ; RhB降解 ; 芬顿反应
  • 英文关键词:catalytic chemistry;;LDHs;;GO;;nano composites;;RhB degradation;;Fenton reaction
  • 中文刊名:工业催化
  • 英文刊名:Industrial Catalysis
  • 机构:沈阳师范大学化学化工学院能源与环境催化研究所;中国石油大学(北京)重质油国家重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:工业催化
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金青年项目(21703144);; 辽宁省自然基金指导计划项目(20180550490);; 辽宁省高等学校基本科研项目(LFW201705);; 沈阳师范大学博士启动项目(BS201805);沈阳师范大学校内项目(XNL2016002);沈阳师范大学优秀人才支持计划;沈阳师范大学大学生科研基金项目(L2016002);; 辽宁省高校重大科技平台“能源与环境催化工程技术研究中心”资助
  • 语种:中文;
  • 页:39-45
  • 页数:7
  • CN:61-1233/TQ
  • ISSN:1008-1143
  • 分类号:TQ426;X703
摘要
针对纳米催化剂在有机染料氧化降解反应中存在的问题,开发高效纳米Fe基催化剂成为当前研究的重点。基于"创新纳米结构调变催化功能"的新策略,利用类水滑石层板金属离子和层间阴离子与氧化石墨烯(GO)表面官能团之间的静电作用,采用水热法制备氧化石墨烯复合类水滑石Fe-LDH@GO纳米催化剂。利用XRD、N_2吸附-脱附和TEM对催化剂的形貌、尺寸、孔道及FeO_x粒子尺寸等物化性质进行表征,发现氧化石墨烯的引入不改变水滑石纳米片结构和形貌,但能够增加催化剂的比表面积,有效锚定FeO_x纳米粒子,使其粒径减小并均匀分散在载体表面,提供更多的有效活性位点。XPS结果表明,催化剂表面存在的Fe~(2+)是芬顿反应的活性中心,氧化石墨烯的引入提高含氧官能团数量,使其在RhB降解反应中表现出优异的催化活性,反应14 min时,RhB转化率100%。
        New and efficient Fe-based nanocatalyst development is urgently desired due to problems of nanocatalyst for organic dyes oxidative degradation reactions.It still remains a big challenge.Herein,based on new strategy of innovated the catalytic function of nanostructures,new types of LDH@GO catalysts were prepared by the hydrothermal method considering the electrostatic interaction between the hydrotalcite interlayer metal anion and the surface functional group of graphene oxide(GO).The physicochemical properties of the catalyst such as morphology,size,pore volume and FeO_x particle size were characterized by XRD,N_2 adsorption-desorption and TEM.It was found that the introduction of GO did not change the structure and morphology of the hydrotalcite nanosheets.It could increase the specific surface area of LDH@GO catalysts,and anchor FeO_x nanoparticles effectively to decrease particle size and disperse highly on support surface,which provided more effective active sites.XPS results showed that Fe~(2+) on the catalyst surface were major active site for the Fenton reaction.The introduction of GO increased the number of oxygen-containing functional groups which resulted in excellent catalytic performance for the RhB degradation.Conversion was 100% within 14 minutes of reation time.
引文
[1]Nidheesh P V.Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution:a review[J].RSC Advances,2015,46(28):40552-40577.
    [2]Chen Yaxin,Huang Zhiwei,Zhou Meijuan,et al.The active sites of supported silver particle catalysts in formaldehyde oxidation[J].Chemical Communications,2016,52(65):9996-9999.
    [3]Kudernatsch W,Peng G,Zeuthen H,et al.Direct visualization of catalytically active sites at the FeO-Pt(111) interface[J].ACS Nano,2015,9(8):7804-7814.
    [4]He Shan,An Zhe,Wei Min,et al.Layered double hydroxide-based catalysts:nanostructure design and catalytic performance[J].Chemical Communications,2013,44(36):5912-5920.
    [5]Fan G L,Li F,Evans D G,et al.Catalytic applications of layered double hydroxides:recent advances and perspectives[J].Chemical Society Reviews,2014,43(20):7040-7066.
    [6]Shao Mingfei,Zhang Ruikang,Li Zhenhua,et al.Layered double hydroxides toward electrochemical energy storage and conversion:design,synthesis and applications[J].Chemical Communications,2015,51(88):15880-15893.
    [7]Li C M,Wei M,Evans D G,et al.Recent advances for layered double hydroxides(LDHs) materials as catalysts applied in green aqueous media[J].Catalysis Today,2015,247:163-169.
    [8]Chen Dan,Li Yang,Zhang Jia,et al.Magnetic Fe3O4/ZnCr-layered double hydroxide composite with enhanced adsorption and photocatalytic activity[J].Chemical Engineering Journal,2012,185-186(6):120-126.
    [9]Shao Mingfei,Han Jingbin,Wei Min,et al.The synthesis of hierarchical Zn-Ti layered double hydroxide for efficient visible-light photocatalysis[J].Chemical Engineering Journal,2011,168(2):519-524.
    [10]Zhu Haitao,Ni Zhenming,Xue Jilong.Adsorption applications of acid blue 7 on Mg/Al Layered double oxides and mechanism study[J].Acta Chimica Sinica,2012,70(17):1798-1804
    [11]Ren Wencai,Cheng Huiming.The global growth of graphene[J].Nature Nanotechnology,2014,9(10):726-730.
    [12]张安玉,于濂清,张志萍,等.氧化铁/石墨烯原位复合物对铬酸钾吸附性能研究[J].工业催化,2016,24(10):41-46.ZhangAnyu,Yu Lianqing,Zhang Zhiping,et al.Research on adsorption properties for iron oxide /graphene composite for potassium chromate[J].Industrial Catalysis,2016,24(10):41-46.
    [13]Dilantha Thushara,潘若飞,贺晓东,等.磺化石墨烯固体酸催化剂的制备及活性评价[J].工业催化,2014,22(9):676-679.Dilanrha Thushare,Pan Ruofei,He Xiaodong,et al.Synthesis of sulfonated graphene oxide solid acid catalyst and its catalytic activity evaluation[J].Industrial Catalysis,2014,22(9):676-679.
    [14]Marcano D C,Kosynkin D V,Berlin J M,et al.Improved synthesis of graphene oxide[J].ACS Nano,2010,4(8):4806-4814.
    [15]Kang S,Pawar R C,Pyo Y,et al.Size-controlled BiOCl-RGO composites having enhanced photodegradative properties[J].Journal of Experimental Nanoscience,2016,11(4):259-275.
    [16]Wang X,Mujtaba J,Fang F,et al.Constructing aligned γ-Fe2O3 nanorods with internal void space anchored on reduced graphene oxide nanosheets for excellent lithium storage[J].RSC Advances,2015,5(111):91574-91580.
    [17]Dong Yingli,Zhang Xiamfa,Cheng Xiaoli,et al.Highly selective NO sens or at room temperature based on nanocomposites of hierarchical nanosphere-like α-FeO and reduced graphene oxide[J].RSC Advances,2014,4(101):57493-57500.
    [18]Tang Wenxiang,Deng Yuzhou,Li Wenhui,et al.Importance of porous structure and synergistic effect on the catalytic oxidation activities over hierarchical Mn-Ni composite oxides[J].Catalysis Science & Technology,2016,6(6):1710-1718.
    [19]Chen Xiongbo,Wang Penglu,Fang Ping,et al.Design strategies for SCR catalysts with improved N2 selectivity:the significance of nano-confining effects by titanate nanotubes[J].Environmental Science Nano,2017,4(2):437-447.
    [20]Deng Xingyi,Lee Junseok,Wang Congjun,et al.In situ observation of water dissociation with lattice incorporation at FeO particle edges using scanning tunneling microscopy and X-ray photoelectron spectroscopy[J].Langmuir,2011,27(6):2146-2149.
    [21]孙洋洋,杨茜怡,吕春芳.磁性氧化石墨烯/TiO2复合材料的制备及光催化降解染料废水的研究[J].应用化工,2014,43(10):1771-1774.Sun Yangyang,Yang Qianyi,Lü Chunfan.Preparation and degradation of dye wastewater evolution of magnetic GO/TiO2[J].Applied Chemmical Industry,2014,43(10):1771-1774.
    [22]袁冰,张新,侯万国.Zn/Al类水滑石及其插层材料的光催化性能[J].应用化学,2012,41(2):196-201.Yuan Bing,Zhang Xin,Hou Wanguo.Photocatalytic properties of Zn/Al hydrotalcite-like compounds and their intercalation materials[J].Applied Chemmical Industry,2012,41(2):196-201.
    [23]Duarte F,Maldonado-Hódar F J,Madeira L M.New insight about Orange Ⅱ elimination by characterization of spent activated carbon/Fe Fenton-like catalysts[J].Applied Catalysis B:Environmental,2013,129(2):264-272.
    [24]Li Huiyuan,Li Yanli,Xiang Luojing,et al.Heterogeneous photo-Fenton decolorization of Orange Ⅱ over Al-pillared Fe-smectite:response surface approach,degradation pathway,and toxicity evaluation[J].Journal of Hazardous Materials,2015,287(6):32-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700