用户名: 密码: 验证码:
活性污泥降解四溴双酚A的特性、途径及毒性评估
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Degradation of tetrabromobisphenol A by activated sludge: Characteristics,pathway and toxicity assessment
  • 作者:周楚缘 ; 彭星星 ; 贾晓珊
  • 英文作者:ZHOU Chuyuan;PENG Xingxing;JIA Xiaoshan;School of Environmental Science and Engineering, Sun Yat-sen University;Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology;
  • 关键词:四溴双酚A(TBBPA) ; 活性污泥 ; 降解特性 ; 影响因素 ; 代谢途径 ; 毒性评估
  • 英文关键词:tetrabromobisphenol A (TBBPA);;activated sludge;;degradation characteristics;;influencing factors;;degradation pathway;;toxicity assessment
  • 中文刊名:环境科学学报
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:中山大学环境科学与工程学院;广东省环境污染控制与修复技术重点实验室;
  • 出版日期:2019-05-23 16:20
  • 出版单位:环境科学学报
  • 年:2019
  • 期:09
  • 基金:国家自然科学基金(No.41703086,51878676);; 广州市珠江科技新星项目(No.201806010100)
  • 语种:中文;
  • 页:92-101
  • 页数:10
  • CN:11-1843/X
  • ISSN:0253-2468
  • 分类号:X703;X171.5
摘要
电子行业典型污染物溴代阻燃剂对环境的污染引起了广泛关注.本文以产量最大、应用最广的典型溴代阻燃剂四溴双酚A(Tetrabromobisphenol A,TBBPA)为研究对象,考察了活性污泥降解四溴双酚A的特性、影响因素、降解途径并进行毒性评估.结果显示:活性污泥能有效降解水体中的TBBPA;在初始接菌量OD_(600)=0.77,TBBPA浓度为2.50 mg·L~(-1),温度为40℃,pH值为6.0时,经6 h反应后降解率可达58.46%,脱溴率达43.80%;在自然水体中活性污泥对TBBPA的降解受到抑制,尤其在腐殖质含量较高时;自然光能促进TBBPA降解,紫外光则抑制其降解活性;利用LC-Q-TOF-MS/MS检测到3种中间产物,推测TBBPA可能通过以下两种路径降解:①TBBPA发生甲基化和脱溴反应,产生甲基化的二溴双酚A,随后发生羟基化反应生成5-[1-(3-溴-4-甲氧基-苯基)-1-甲基-乙基]-2-甲氧基-苯酚;②TBBPA发生羟基化反应生成5-[1-(3-溴-4,5-二羟基-苯基)-1-甲基-乙基]-苯-1,2,3-三醇,随后发生脱溴、羟基化和甲基化反应,生成5-[1-(3-羟基-4,5-二甲氧基-苯基)-1-甲基-乙基]-2-甲氧基-苯-1,3-二醇;最后,利用发光细菌对该降解过程进行毒性评价,结果表明,活性污泥降解TBBPA的过程中其毒性未被完全去除,仍存在一定的环境风险.
        The environmental pollution caused by brominated flame retardants, typical pollutants from electronic industry, has attracted much attention worldwide. The present study selected tetrabromobisphenol A(TBBPA), one of the typical brominated flame retardants which has the largest production and the most extensive applications, as the concerned chemical to investigate its degradation characteristics by activated sludge. The influencing factors, transformation pathway and toxicity assessment were investigated. The results show that activated sludge could effectively degrade TBBPA in water. Under the optimal condition(a bacterial inoculum of 0.77, an initial concentration of TBBPA of 2.50 mg·L~(-1), a temperature of 40 ℃, and initial pH value of 6.0), 58.46% of TBBPA could be removed in 6 h, with an incompletely debromination rate as high as 43.80%. The degradation would be inhibited in natural water, especially due to high concentration of humus. Natural light could enhance the degradation. However, ultraviolet light would decrease the degradation efficiency. Three intermediates were identified by using the LC-Q-TOF-MS/MS analysis, and two pathways of TBBPA biodegradation were proposed as follows:(I) Methylated dibromobisphenol A was generated by methylation and debromination, followed by the formation of 5-[1-(3-Bromo-4-methoxy-phenyl)-1-methyl-ethyl]-2-methoxy-phenol through hydroxylation;(II) TBBPA was first attacked by HO· to form 5-[1-(3-Bromo-4,5-dihydroxy-phenyl)-1-methyl-ethyl]-benzene-1,2,3-triol, which was then transformed to 5-[1-(3-Hydroxy-4,5-dimethoxy-phenyl)-1-methyl-ethyl]-2-methoxy-benzene-1,3-diol by hydroxylation and methylation. The toxicity evaluated by luminous bacteria indicated that the toxicity risk was not completely erased through the biodegradation process, suggesting a potential threat to the environment safety.
引文
An T C,Zu L,Li G Y,et al.2011.One-step process for debromination and aerobic mineralization of tetrabromobisphenol-A by a novel Ochrobactrum sp.T isolated from an e-waste recycling site[J].Bioresource Technology,102(19):9148-9154
    Bao Y P,Niu J F.2015.Photochemical transformation of tetrabromobisphenol A under simulated sunlight irradiation:Kinetics,mechanism and influencing factors[J].Chemosphere,134:550-556
    Binaglia M,Ramos-Bordajandi L,Bergman A,et al.2015.Assessment of the known and the unknown:Brominated flame retardants[J].Toxicology Letters,238(2):S11
    Chen X,Gu X Y,Zhao X P,et al.2018.Species-dependent toxicity,accumulation,and subcellular partitioning of cadmium in combination with tetrabromobisphenol A in earthworms[J].Chemosphere,210:1042-1050
    George K W,Haeggblom M M.2008.Microbial o-methylation of the flame retardant tetrabromobisphenol-A[J].Environmental Science & Technology,42(15):5555-5561
    Islam M S,Zhou H,Zytner R G.2018.Biodegradation and Metabolism of Tetrabromobisphenol A (TBBPA) in the bioaugmented activated sludge batch bioreactor system by heterotrophic and nitrifying bacteria[J].Water Environment Research,90(2):122-128
    Jakobsson K,Thuresson K,Rylander L,et al.2002.Exposure to polybrominated diphenyl ethers and tetrabromobisphenol A among computer technicians[J].Chemosphere,46(5):709-716
    金彩霞,司晓薇,王万峰,等.2017.不同形态磺胺类药物在根-土界面的空间分布及毒性评价[J].环境科学,38(4):1683-1688
    Kim U J,Oh J E.2018.Mass-flow-based removal and transformation potentials for TBBPA,HBCDs and PBDEs during wastewater treatment processes[J].Journal of Hazardous Materials,355:82-88
    Li F J,Wang J J,Nastold P,et al.2014.Fate and metabolism of tetrabromobisphenol A in soil slurries without and with the amendment with the alkylphenol degrading bacterium Sphingomonas sp.strain TTNP3[J].Environmental Pollution,193:181-188
    Li Y N,Zhou Q X,Wang Y Y,et al.2011.Fate of tetrabromobisphenol A and hexabromocyclododecane brominated flame retardants in soil and uptake by plants (EI)[J].Chemosphere,82(2):204-209
    Liu A F,Qu G B,Yu M,et al.2016.Tetrabromobisphenol-A/S and nine novel analogs in biological samples from the Chinese Bohai Sea:Implications for trophic transfer[J].Environmental Science & Technology,50(8):4203-4211
    Liu K,Li J,Yan S J,et al.2016.A review of status of tetrabromobisphenol A (TBBPA) in China[J].Chemosphere,148:8-20
    Luo W S,Peng X X,Jing F,et al.2017.Simultaneous microbial removal of carbon,nitrogen,and phosphorus in a modified anaerobic/aerobic (A/O) bioreactor with no phosphorus release[J].Water and Environment Journal,31(2):158-167
    Ma Y N,Zhao Y Y,Wang Y F,et al.2017.Effects of Cu2+ and humic acids on degradation and fate of TBBPA in pure culture of Pseudomonas sp.strain CDT[J].Journal of Environmental Sciences,62:60-67
    Mariusz C,Marcin W,Zofia P S.2009.Biodegradation of the organophosphorus insecticide diazinon by Serratia sp.and Pseudomonas sp.and their use in bioremediation of contaminated soil[J].Chemosphere,76(4):494-501
    Tao L,Wu J P,Zhi H,et al.2016.Aquatic bioaccumulation and trophic transfer of tetrabromobisphenol-A flame retardant introduced from a typical e-waste recycling site[J].Environmental Science & Pollution Research,23(14):14663-14670
    Peng X X,Jia X S.2013a.Optimization of parameters for anaerobic co-metabolic degradation of TBBPA[J].Bioresource Technology,148:386-393
    Peng X X,Zhang Z L,Luo W S,et al.2013b.Biodegradation of tetrabromobisphenol A by a novel Comamonas sp.strain,JXS-2-02,isolated from anaerobic sludge[J].Bioresource Technology,128(1):173-179
    Peng X X,Qu X D,Luo W S,et al.2014.Co-metabolic degradation of tetrabromobisphenol A by novel strains of Pseudomonas sp.and Streptococcus sp.[J].Bioresource Technology,169(5):271-276
    Peng X X,Wang Z N,Wei D Y,et al.2017a.Biodegradation of tetrabromobisphenol A in the sewage sludge process[J].Journal of Environmental Sciences,61:39-48
    Peng X X,Wang Z N,Huang J F,et al.2017b.Efficient degradation of tetrabromobisphenol A by synergistic integration of Fe/Ni bimetallic catalysis and microbial acclimation[J].Water Research,122:471-480
    Peng X X,Tian Y,Liu S W,et al.2017c.Degradation of TBBPA and BPA from aqueous solution using organo-montmorillonite supported nanoscale zero-valent iron[J].Chemical Engineering Journal,309:717-724
    Wang J,Fu Z Z,Liu G F,et al.2013.Mediators-assisted reductive biotransformation of tetrabromobisphenol-A by Shewanella sp.XB[J].Bioresource Technology,142:192-197
    Wang X W,Hu X F,Zhang H,et al.2015.Photolysis kinetics,mechanisms,and pathways of tetrabromobisphenol A in water under simulated solar light irradiation[J].Environmental Science & Technology,49(11):6683-6690
    Xiong J K,Li G Y,An T C,et al.2016.Emission patterns and risk assessment of polybrominated diphenyl ethers and bromophenols in water and sediments from the Beijiang River,South China[J].Environmental Pollution,219:596-603
    Xiong J K,An T C,Zhang C S,et al.2015.Pollution profiles and risk assessment of PBDEs and phenolic brominated flame retardants in water environments within a typical electronic waste dismantling region[J].Environmental Geochemistry & Health,37(3):457-473
    阎宁,夏四清,朱骏,等.2011.紫外辐射下的生物降解及微生物群落的变化[J].环境科学,32(10):3059-3066
    Zhu B,Zhao G,Yang L H,et al.2018.Tetrabromobisphenol A caused neurodevelopmental toxicity via disrupting thyroid hormones in zebrafish larvae[J].Chemosphere,197:353-361
    Zhu Z C,Chen S J,Zheng J,et al.2014.Occurrence of brominated flame retardants (BFRs),organochlorine pesticides (OCPs),and polychlorinated biphenyls (PCBs) in agricultural soils in a BFR-manufacturing region of North China[J].Science of the Total Environment,481:47-54
    Zhang H J,Liu W L,Chen B,et al.2018.Differences in reproductive toxicity of TBBPA and TCBPA exposure in male Rana nigromaculata[J].Environmental Pollution,243:394-403
    Zhang X H,Zhang G S,Zhang Z H,et al.2006.Isolation and characterization of a dichlorvos-degrading strain DDV-1 of Ochrobactrum sp[J].Pedosphere,16(1):64-71
    Zhou J Y,Yu X J,Ding C,et al.2011.Optimization of phenol degradation by Candida tropicalis Z-04 using Plackett-Burman design and response surface methodology[J].Journal of Environmental Sciences,23(1):22-30
    Zu L,Xiong J K,Li G Y,et al.2014.Concurrent degradation of tetrabromobisphenol A by Ochrobactrum sp.T under aerobic condition and estrogenic transition during these processes[J].Ecotoxicology & Environmental Safety,104:220-225

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700