用户名: 密码: 验证码:
水稻镉安全材料分蘖期根部镉积累分布特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Accumulation and distribution characteristics of Cd in roots of cadmium-safe rice line at tillering stage
  • 作者:李芹 ; 张曼 ; 张锡洲 ; 余海英 ; 李廷轩
  • 英文作者:LI Qin;ZHANG Man;ZHANG Xi-zhou;YU Hai-ying;LI Ting-xuan;College of Resource Science, Sichuan Agricultural University;
  • 关键词:水稻 ; 镉安全材料 ; ; 化学形态 ; 细胞壁 ; 半纤维素1
  • 英文关键词:rice;;cadmium-safe line;;cadmium;;chemical forms;;cell wall;;hemicellulose 1
  • 中文刊名:植物营养与肥料学报
  • 英文刊名:Journal of Plant Nutrition and Fertilizers
  • 机构:四川农业大学资源学院;
  • 出版日期:2019-03-25
  • 出版单位:植物营养与肥料学报
  • 年:2019
  • 期:03
  • 基金:四川省重点研发项目(2017SZ0188,2017SZ0198);; 国家科技支撑计划(2015BAD05B01)资助
  • 语种:中文;
  • 页:97-106
  • 页数:10
  • CN:11-3996/S
  • ISSN:1008-505X
  • 分类号:S511;X503.231
摘要
【目的】镉(Cd)低积累作物的培育和应用是减少土壤中Cd通过食物链危害人体健康的重要途径。通过研究Cd处理下水稻分蘖期根部Cd的积累分布特征,揭示水稻Cd安全材料根部Cd的固持机理,为水稻Cd安全品种的培育提供理论依据。【方法】以水稻Cd安全材料D62B为供试材料,普通材料Luhui17为对照,进行水培试验。水稻秧苗于三叶一心时移栽至盆中(40 cm×60 cm×15 cm),以CdCl_2·2.5H_2O加入营养液,设0 (CK)、0.5 (Cd0.5)、1.0 (Cd1)、2.0 (Cd2) mg/L 4个Cd浓度处理,30天后收获,分为根和地上部测定其Cd全量。采用化学试剂逐步提取法和差速离心法分别测定根部Cd化学形态和亚细胞分布特征,并进一步结合细胞壁多糖,研究其对Cd的响应特征。【结果】1) Cd处理下D62B各部位Cd含量显著低于Luhui17,转移系数较小,其根部Cd向地上部转移较少。2)随Cd处理浓度升高D62B根部水提取态Cd分配比例降低,盐酸提取态Cd、残渣态Cd分配比例升高,Cd移动性减弱。D62B根部Cd以氯化钠提取态为主(48.9%~52.1%),高浓度Cd处理(2.0 mg/L)下其分配比例是Luhui17的1.11倍,水提取态是Luhui17的82.3%,其根中Cd的移动性弱于普通材料。3) D62B根部Cd主要分布于可溶部分和细胞壁,其中细胞壁Cd分配比例为38.6%~41.8%,高于Luhui17。随Cd处理浓度升高,D62B根细胞壁Cd分配比例降幅小于Luhui17,其细胞壁对Cd的固持作用有限但强于普通材料。4) D62B根细胞壁半纤维素1的Cd含量是果胶的7.74~8.40倍,Cd主要与细胞壁中半纤维素1结合。半纤维素1 Cd含量随Cd处理浓度升高而显著增加,2.0 mg/L Cd处理下D62B和Luhui17半纤维素1单位总糖Cd结合量较1.0 mg/L Cd处理分别增加32.6%、11.2%,D62B根细胞壁半纤维素1的Cd结合能力强于Luhui17。【结论】水稻Cd安全材料D62B各部位Cd含量低于Luhui17,其转移系数较小。D62B根中Cd主要为氯化钠提取态,随Cd处理浓度升高,根部Cd向移动性较弱的化学形态转化。D62B根细胞壁中Cd主要与半纤维素1结合,由于其Cd结合能力较强,D62B根细胞壁对Cd的固持作用强于普通材料。因此,D62B对Cd的转移能力弱于普通材料,是其籽粒Cd安全的重要原因。
        【Objectives】Cultivation of low Cd accumulation cultivars is an effective measure to minimize Cd influx into the human food chain. The mechanism of Cd immobilization in the roots of the cadmium-safe rice lines were studied in this paper.【Methods】A hydroponic experiment was conducted using a cadmium-safe rice line(D62B) and a common rice line(Luhuil7) as the comparing material. The rice seedlings of 3-leaf-1-sprout stage were cultured in nutrient solution for a week, then exposed to solution of Cd at 0(CK), 0.5(Cd 0.5), 1(Cd 1) and 2(Cd 2) mg/L supplying with CdCl_2·2.5H_2O for 30 days. The plants were harvested and divided into roots and shoots to measure the Cd content, and the chemical forms and subcellular distribution of Cd in roots were analyzed,and the modifications of cell wall polysaccharides to Cd of roots cell wall were discussed.【Results】Compared with Luhui17, D62B showed a lower Cd content in different parts, smaller transfer factor, and less Cd translocation from roots to shoots. Besides the decrease of the proportion of Cd extracted by d-H_2O in roots of two rice lines, the proportion of Cd extracted by 0.6 mg/L HCl and Cd in the residue exhibited an increasing trend with increasing Cd concentration in the solution, indicating that the mobility and activity of Cd in roots of two rice lines decreased with Cd treatments. Among different chemical forms of Cd in roots of D62B, the Cd extracted by1 mol/L NaCl accounted for the largest part(48.9%-52.1%). Furthermore, its proportion was 1.11 times of that of Luhui17, while those extracted by d-H_2O were lower(82.3%) at 2.0 mg/L Cd treatment, indicating that the mobility and activity of Cd in roots of D62B were much lower than those of Luhui17. The vast majority of Cd was in soluble fraction and in the cell wall of the roots. The Cd in the roots cell wall of D62B was 38.6%-41.8%,higher than that of Luhui17. With increasing Cd content, the proportion of Cd in roots cell wall decreased, but D62B showed a greater capacity than Luhui17 to attain Cd within cell wall with a limit. As the hemicellulose 1 is the major site for Cd storage in roots cell wall, the Cd content in hemicellulose 1 of roots cell wall was 7.74-8.40 times that in pectin of D62B. The Cd content in hemicellulose 1 of two rice lines significantly increased with increasing Cd concentrations. The amount of Cd in polysaccharide of hemicellulose 1 of D62B and Luhui17 increased by 32.6% and 11.2%, respectively, at 2.0 mg/L Cd treatment compared to those at 1.0 mg/L Cd treatment. Furthermore, the total polysaccharide content in hemicellulose 1 as well as the Cd content of roots cell wall increased with the increase of Cd concentration, suggesting that the increase in hemicellulose 1 contributed greatly to the fixation of Cd~(2+) in the cell wall.【Conclusions】The cadmium-safe rice line designated D62B showed lower Cd content in plant and smaller transfer factor than those of Luhui17. Cd extracted by 1 mol/L NaCl was the major form in roots of D62B. Increasing Cd concentration resulted in conversion of Cd to less mobile forms. Cd in roots cell wall was mainly fixed by hemicellulose 1, and D62B showed a stronger fixation than Luhui17. The stronger capacity of cell wall of D62B to retain Cd was associated with fixation of hemicellulose 1.Cd in the immobile form and immobilization in hemicellulose 1 of roots cell wall of cadmium-safe rice line restrains the translocation of Cd from roots to shoots, which is a major mechanism that differentiate the rice lines the in governing the accumulation of Cd in grains.
引文
[1]Zhang W,Lin K F,Zhou J,et al.Cadmium accumulation,sub-cellular distribution and chemical forms in rice seedling in the presence of sulfur[J].Environmental Toxicology&Pharmacology,2014,37(1):348-353.
    [2]Li B,He W X,Wang C Q,et al.Selecting for cadmium exclusion or low accumulation rice cultivars in slight-moderate pollution area under field conditions[J].Polish Journal of Environmental Studies,2014,23(4):1347-1353.
    [3]Uraguchi S,Mori S,Kuramata M,et al.Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice[J].Journal of Experimental Botany,2009,60(9):2677-2688.
    [4]Yan Y F,Choi D H,Kim D S,et al.Absorption,translocation,and remobilization of cadmium supplied at different growth stages of rice[J].Journal of Crop Science&Biotechnology,2010,13(2):113-119.
    [5]唐皓,李廷轩,张锡洲,等.水稻镉高积累材料的筛选及其镉积累特征研究[J].生态环境学报,2015,24(11):1910-1916.Tang H,Li T X,Zhang X Z,et al.Screening of rice cultivars with high cadmium accumulation and its cadmium accumulation characteristics[J].Ecology and Environmental Sciences,2015,24(11):1910-1916.
    [6]Wu F B,Dong J,Qian Q Q,Zhang G P.Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes[J].Chemosphere,2005,60(10):1437-1446.
    [7]于辉,杨中艺,杨知建,向佐湘.不同类型镉积累水稻镉化学形态及亚细胞和分子分布[J].应用生态学报,2008,19(10):2221-2226.Yu H,Yang Z Y,Yang Z J,Xiang Z X.Chemical forms and subcellular and molecular distribution of Cd in two Cd-accumulation rice genotypes[J].Chinese Journal of Applied Ecology,2008,19(10):2221-2226.
    [8]Clemens S,Palmgren M G,Kr?mer U.A long way ahead:understanding and engineering plant metal accumulation[J].Trends in Plant Science,2002,7(7):309-315.
    [9]Ueno D,Yamaji N,Kono I,et al.Gene limiting cadmium accumulation in rice[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(38):16500-16505.
    [10]Liu J G,Qu P,Zhang W,et al.Variations among rice cultivars in subcellular distribution of Cd:The relationship between translocationand grain accumulation[J].Environmental&Experimental Botany,2014,107(6):25-31.
    [11]Xin J L,Huang B F,Yang Z Y,et al.Comparison of cadmium subcellular distribution in different organs of two water spinach (Ipomoea aquatica,Forsk.)cultivars[J].Plant&Soil,2013,372(1-2):431-444.
    [12]Zhu X F,Lei G J,Jiang T,et al.Cell wall polysaccharides are involved in P-deficiency-induced Cd exclusion in Arabidopsis thaliana[J].Planta,2012,236(4):989-997.
    [13]Zhang H J,Zhang X Z,Li T X,et al.Variation of cadmium uptake,translocation among rice lines and detecting for potential cadmium-safe cultivars[J].Environmental Earth Sciences,2014,71(1):277-286.
    [14]张路,张锡洲,李廷轩,等.水稻镉安全亲本材料对镉的吸收分配特性[J].中国农业科学,2015,48(1):174-184.Zhang L,Zhang X Z,Li T X,et al.Cd uptake and distribution characteristics of Cd pollution-safe rice materials[J].Scientia Agricultura Sinica,2015,48(1):174-184.
    [15]张曼,张锡洲,李廷轩,等.镉处理对水稻镉安全材料的镉积累及转移特性的影响[J].农业环境科学学报,2017,36(2):223-229.Zhang M,Zhang X Z,Li T X,et al.Cd accumulations and transfer characteristics of Cd pollution-safe rice materials under different Cd treatment[J].Journal of Agro-Environment Science,2017,36(2):223-229.
    [16]毛达如.植物营养研究方法[M].北京:中国农业大学出版社,2005.Mao D R.Plant nutrition research methods[M].Beijing:China Agricultural University Press,2005.
    [17]Su Y,Liu J L,Lu Z W,et al.Effects of iron deficiency on subcellular distribution and chemical forms of cadmium in peanut roots in relation to its translocation[J].Environmental&Experimental Botany,2014,97(1):40-48.
    [18]Wang X,Liu Y G,Zeng G M,et al.Subcellular distribution and chemical forms of cadmium in Bechmeria nivea(L.)Gaud.[J].Environmental&Experimental Botany,2008,62(3):389-395.
    [19]Zhong H L,Lauchli A.Changes of cell wall composition and polymer size in primary roots of cotton seedlings under high salinity[J].Journal of Experimental Botany,1993,44(261):773-778.
    [20]刘婷婷,彭程,王梦,等.海州香薷根细胞壁对铜的吸附固定机制研究[J].环境科学学报,2014,34(2):514-523.Liu T T,Peng C,Wang M,et al.Mechanism of fixation and adsorption of copper on root cell wall of Elsholtzia splendens[J].Acta Scientiae Circumstantiae,2014,34(2):514-523.
    [21]Sun Y B,Zhou Q X,Diao C Y.Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L.[J].Bioresource Technology,2008,99(5):1103-1110.
    [22]Shimo H,Ishimaru Y,An G,et al.Low cadmium(LCD),a novel gene related to cadmium tolerance and accumulation in rice[J].Journal of Experimental Botany,2011,62(15):5727-5734.
    [23]Li Z,Wu L H,Hu P J,et al.Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola[J].Journal of Hazardous Materials,2013,261(20):332-341.
    [24]Li H,Luo N,Zhang L J,et al.Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics,subcellular distribution and chemical forms in rice[J].Science of the Total Environment,2016,571:1183-1190.
    [25]Shi X H,Zhang C C,Wang H,et al.Effect of Si on the distribution of Cd in rice seedlings[J].Plant&Soil,2005,272(1-2):53-60.
    [26]He J Y,Zhu C,Ren Y F,et al.Uptake,subcellular distribution,and chemical forms of cadmium in wild-type and mutant rice[J].Pedosphere,2008,18(3):371-377.
    [27]Fu X P,Dou C M,Chen Y X,et al.Subcellular distribution and chemical forms of cadmium in Phytolacca americana L.[J].Journal of Hazardous Materials,2011,186(1):103-107.
    [28]Wang J B,Su L Y,Yang J Z,et al.Comparisons of cadmium subcellular distribution and chemical forms between low-Cd and high-Cd accumulation genotypes of watercress(Nasturtium officinale,L.R.Br.)[J].Plant&Soil,2015,396(1-2):325-337.
    [29]Yu H,Xiang Z X,Zhu Y,et al.Subcellular and molecular distribution of cadmium in two rice genotypes with different level of cadmium accumulation[J].Journal of Plant Nutrition,2012,35(1):71-84.
    [30]Zhang J,Sun W C,Li Z J,et al.Cadmium fate and tolerance in rice cultivars[J].Agronomy for Sustainable Development,2009,29(3):483-490.
    [31]Qiu Q,Wang Y T,Yang Z Y,Yuan J G.Effects of phosphorus supplied in soil on subcellular distribution and chemical forms of cadmium in two Chinese flowering cabbage(Brassica parachinensis L.)cultivars differing in cadmium accumulation[J].Food&Chemical Toxicology,2011,49(9):2260-2267.
    [32]Xin J L,Huang B F.Subcellular distribution and chemical forms of cadmium in two hot pepper cultivars differing in cadmium accumulation[J].Journal of Agricultural&Food Chemistry,2014,62(2):508-515.
    [33]Xin J,Zhao X H,Tan Q L,et al.Comparison of cadmium absorption,translocation,subcellular distribution and chemical forms between two radish cultivars(Raphanus sativus L.)[J].Ecotoxicology&Environmental Safety,2017,145:258-265.
    [34]Xue M,Zhou Y H,Yang Z Y,et al.Comparisons in subcellular and biochemical behaviors of cadmium between low-Cd and high-Cd accumulation cultivars of pakchoi(Brassica chinensis L.)[J].Frontiers of Environmental Science&Engineering,2014,8(2):226-238.
    [35]Schiewer S,Iqbal M.The role of pectin in Cd binding by orange peel biosorbents:a comparison of peels,depectinated peels and pectic acid[J].Journal of Hazardous Materials,2010,177(1):899-907.
    [36]Muschitz A,Riou C,Mollet J C,et al.Modifications of cell wall pectin in tomato cell suspension in response to cadmium and zinc[J].Acta Physiologiae Plantarum,2015,37(11):245.
    [37]Dai M Y,Liu W W,Hong H L,et al.Exogenous phosphorus enhances cadmium tolerance by affecting cell wall polysaccharides in two mangrove seedlings Avicennia marina(Forsk.)Vierh and Kandelia obovata(S.,L.)Yong differing in cadmium accumulation[J].Marine Pollution Bulletin,2018,126:86-92.
    [38]Li T Q,Tao Q,Shohag M J I,et al.Root cell wall polysaccharides are involved in cadmium hyperaccumulation in Sedum alfredii[J].Plant&Soil,2015,389(1-2):387-399.
    [39]Xu S S,Lin S Z,Lai Z X.Cadmium impairs iron homeostasis in Arabidopsis thaliana,by increasing the polysaccharide contents and the iron-binding capacity of root cell walls[J].Plant&Soil,2015,392(1-2):71-85.
    [40]Meychik N,Nikolaeva Y,Kushunina M,et al.Are the carboxyl groups of pectin polymers the only metal-binding sites in plant cell walls?[J].Plant&Soil,2014,381(1-2):25-34.
    [41]Balaria A,Schiewer S.Assessment of biosorption mechanism for Pb binding by citrus pectin[J].Separation&Purification Technology,2008,63(3):577-581.
    [42]Xiong J,An L Y,Lu H,Zhu C.Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall[J].Planta,2009,230(4):755-765.
    [43]Zhu X F,Wang Z W,Dong F,et al.Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls[J].Journal of Hazardous Materials,2013,263:398-403.
    [44]Ma J,Cai H M,He C W,et al.A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice(Oryza sativa)cells[J].New Phytologist,2015,206(3):1063-1074.
    [45]Liu B,Chen L,Chen S B,et al.Subcellular Cd accumulation characteristic in root cell wall of rice cultivars with different sensitivities to Cd stress in soil[J].Journal of Integrative Agriculture,2016,15(9):2114-2122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700