北运河流域雨洪“源-汇”景观时空演变
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial and temporal changes of ‘source-sink’ landscapes during stromwater processes in the North Canal Basin, China
  • 作者:王志芳 ; 程可欣
  • 英文作者:WANG Zhifang;CHENG Kexin;College of Architecture and Landscape of Peking University;
  • 关键词:“源汇”景观理论 ; 城市内涝 ; 洪涝灾害 ; 北运河流域
  • 英文关键词:‘source and sink’ landscape theory;;urban waterlogging;;flood disaster;;North Canal Basin
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:北京大学建筑与景观设计学院;
  • 出版日期:2019-08-23
  • 出版单位:生态学报
  • 年:2019
  • 期:16
  • 语种:中文;
  • 页:179-188
  • 页数:10
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:TU984.18
摘要
近年来,海绵城市建设热潮涌现,这一强调雨洪弹性的领域却极度缺乏对于宏观水平过程的探究,未能系统理解雨洪过程的转变动态。由此,引入用以分析各类型生态过程及景观格局的重要理论——"源-汇"景观理论,以北运河流域洪涝过程的内在作用机制为例,着重强调与探求雨洪过程中"源"景观与"汇"景观的相对性与动态性。研究选取关键的景观因子指标,利用最小累积阻力模型测算雨洪径流动力值与地表景观阻力值,从而分析"源-汇"景观的动态演变特征,结果表明:北运河流域中,作为初始径流"源"的区域集中于蟒山山地以及百望山及阳台山山地,易成为山体径流的源头;在北运河流域范围内,自然排水条件下,产生径流的"源"景观类型比例大小排序为:林地>公建用地>道路>工业及设施用地>居住用地>荒地>绿地>农田;在5年一遇的重现期状态下,建设用地雨水消纳能力良好,10年以上重现期下其"源"作用偏强。非建设用地中的林用地在5年一遇重现期下"源"作用已很强,农用地一直有很强的"汇"作用。城市绿地在20年一遇的降雨下已有20%变成"源",其消纳雨水能力有待进一步的观察与实验;在北京城区内涝积水点体现出西多东少、北多南少的特征,径流过程随降雨强度的增大,以由西向东、由北向南的趋势扩散。北京城内洪涝灾害的成因多有缘于山体径流,需尽早探寻合理的手段与对策解决高山林地的径流问题。
        ‘Sponge city’ projects are booming all cross China over recent years. The term ‘sponge city’ emphasizes the elasticity of stormwater, but current ‘sponge city’ analyses have yet examined the large-scale horizontal processes and thus failed to systematically understand the dynamics of the stormwater ‘source-sink’. Taking the inner flooding mechanism of the North Canal Basin as an example, this paper introduces the ‘source-sink’ landscape theory in order to analyse the ‘source-sink’ dynamics during the stromwater runoff process. The study selected a series of key landscape factors, and applied the minimum cumulative resistance model to calculate the value of the stormwater runoff stimulus and the surface landscape resistance. The results demonstrate that in the North Canal Basin, the initial ‘source’ runoff locates in mountainous areas, including Mount Mang, Mount Baiwang, and Mount Yangtai. Under natural drainage, the sequences of the ‘source’ landscape types that generate runoff are: forest land > public construction land > road > industrial and facility land > residential area > wasteland > urban green space > farmland. Overall, the construction land has good rainwater absorption capacity with a 5-year rainfall return period, but becomes to be the ‘source’ after 10-year rainfall return period. Within the non-construction land categories, the forest land has the strongest ‘source’ effect even at a 5-year rainfall return period, and the agricultural land has the strongest ‘sink’ effect all the time. The urban green space gradually becomes source after 20-year rainfall return period, the rainwater absorption ability of green spaces warrants further exploration. Waterlogging points concentrate in the north and the west, but scatter in the south and the east of downtown Beijing. As the rainfall intensity increases, the runoff spreads out from the west to the east and from the north to the south. Since the floods in Beijing are probably started from mountain runoffs, practical approaches and strategies are urgently needed to solve the runoff problem caused by subalpine forests in the North Canal Basin.
引文
[1] 仇保兴.海绵城市(LID)的内涵、途径与展望.建设科技,2015,(1):11- 18.
    [2] 俞孔坚,李迪华,袁弘,傅微,乔青,王思思.“海绵城市”理论与实践.城市规划,2015,39(6):26-36.
    [3] 黄硕,郭青海.城市景观格局演变的水环境效应研究综述.生态学报,2014,34(12):3142- 3150.
    [4] 陈利顶,傅伯杰,赵文武.“源”“汇”景观理论及其生态学意义.生态学报,2006,26(5):1444- 1449.
    [5] Mouquet N,Loreau M.Community patterns in source-sink metacommunities.The American Naturalist,2003,162(5):544- 557.
    [6] Doak D F.Source-sink models and the problem of habitat degradation:general models and applications to the yellowstone grizzly.Conservation Biology,1995,9(6):1370- 1379.
    [7] 戴彬,吕建树,战金成,张祖陆,刘洋,周汝佳.山东省典型工业城市土壤重金属来源、空间分布及潜在生态风险评价.环境科学,2015,36(2):507- 515.
    [8] 赵媛,杨足膺,郝丽莎,牛海玲.中国石油资源流动源—汇系统空间格局特征.地理学报,2012,67(4):455- 466.
    [9] 陈利顶,丘君,张淑荣,傅伯杰.复杂景观中营养型非点源污染物时空变异特征分析.环境科学,2003,24(3):85- 90.
    [10] 孙然好,陈利顶,王伟,王赵明.基于“源”“汇”景观格局指数的海河流域总氮流失评价.环境科学,2012,33(6):1784- 1788.
    [11] 李丽光,许申来,王宏博,赵梓淇,蔡福,武晋雯,陈鹏狮,张玉书.基于源汇指数的沈阳热岛效应.应用生态学报,2013,24(12):3446- 3452.
    [12] 陈利顶,傅伯杰,徐建英,巩杰.基于“源-汇”生态过程的景观格局识别方法——景观空间负荷对比指数.生态学报,2003,23(11):2406- 2413.
    [13] 李晶,周自翔.延河流域景观格局与生态水文过程分析.地理学报,2014,69(7):933- 944.
    [14] 刘芳,沈珍瑶,刘瑞民.基于“源-汇”生态过程的长江上游农业非点源污染.生态学报,2009,29(6):3271- 3277.
    [15] 王云才,Miller P,Katen B.文化景观空间传统性评价及其整体保护格局——以江苏昆山千灯—张浦片区为例.地理学报,2011,66(4):525- 534.
    [16] 吕一河,陈利顶,傅伯杰.景观格局与生态过程的耦合途径分析.地理科学进展,2007,26(3):1- 10.
    [17] 许申来,周昊.景观“源、汇”的动态特性及其量化方法.水土保持研究,2008,15(6):64- 67.
    [18] Liu S,Crossman N D,Nolan M,Ghirmay H.Bringing ecosystem services into integrated water resources management.Journal of Environmental Management,2013,129:92- 102.
    [19] Gober P.Getting outside the water box:the need for new approaches to water planning and policy.Water Resources Management,2013,27(4):955- 957.
    [20] 孙鹏,王志芳,姜芊孜,张华清,张凌.人性化的城市雨水景观设计对策.景观设计学,2013,1(04):83-87.
    [21] 俞孔坚,许涛,李迪华,王春连.城市水系统弹性研究进展.城市规划学刊,2005,(1):75-83.
    [22] Batica J,Gourbesville P.Resilience in flood risk management - a new communication tool.Procedia Engineering,2016,154:811- 817.
    [23] Gersonius B,Ashley R,Pathirana A,Zevenbergen C.Climate change uncertainty:building flexibility into water and flood risk infrastructure.Climatic Change,2013,116(2):411- 423.
    [24] 李彦东,李红有.对北运河治理规划的思考.海河水利,2006,(1):24- 27.
    [25] 霍亚贞,杨作民,孟德政.北京自然地理.北京:北京师范学院出版社,1989:168- 169.
    [26] Knaapen J P,Scheffer M,Harms B.Estimating habitat isolation in landscape planning.Landscape and Urban Planning,1992,23(1):1- 16.
    [27] Ye Y Y,Su Y X,Zhang H O,Liu K,Wu Q T.Construction of an ecological resistance surface model and its application in urban expansion simulations.Journal of Geographical Science,2015,25(2):211- 224.
    [28] 迟妍妍,许开鹏,王晶晶,张丽苹.京津冀地区生态空间识别研究.生态学报,2018,38(23):8555- 8563.
    [29] 俞孔坚.生物保护的景观生态安全格局.生态学报,1999,19(1):8- 15.
    [30] 刘孝富,舒俭民,张林波.最小累积阻力模型在城市土地生态适宜性评价中的应用——以厦门为例.生态学报,2010,30(2):421- 428.
    [31] 刘琳,姚波.基于NDVI象元二分法的植被覆盖变化监测.农业工程学报,2010,26(13):230- 234.
    [32] 马广玉,李嘉薇,方青青,姜宏.模拟降雨条件下典型土壤的可蚀性与养分流失特征.生态学杂志,2015,34(8):2267- 2273.
    [33] 张科利,彭文英,杨红丽.中国土壤可蚀性值及其估算.土壤学报,2007,44(1):7- 13.
    [34] 章文波,谢云,刘宝元.利用日雨量计算降雨侵蚀力的方法研究.地理科学,2002,22(6):705- 711.
    [35] 李纪宏,刘雪华.基于最小费用距离模型的自然保护区功能分区.自然资源学报,2006,21(2):217- 224.
    [36] Ferreras P.Landscape structure and asymmetrical inter-patch connectivity in a metapopulation of the endangered Iberian lynx.Biological Conservation,2001,100(1):125- 136.
    [37] 陈春娣,吴胜军,Douglas M C,吕明权,温兆飞,姜毅,陈吉龙.阻力赋值对景观连接模拟的影响.生态学报,2015,35(22):7367- 7376.