用户名: 密码: 验证码:
CMC改性纳米Fe/Cu双金属模拟PRB去除地下水中2,4-二氯苯酚
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Removal of 2,4-dichlorophenol from groundwater by PRB simulated by CMC modified nanoscale Fe/Cu bimetal
  • 作者:潘煜 ; 孙力平 ; 陈星宇 ; 林明意
  • 英文作者:PAN Yu;SUN Li-ping;CHEN Xing-yu;LIN Ming-yi;School of Environmental and Municipal Engineering , Tianjin Key Laboratory of Aquatic Science and Technology;
  • 关键词:改性纳米Fe/Cu双金属 ; 可渗透反应墙(PRB) ; 2 ; 4-二氯苯酚 ; 脱氯
  • 英文关键词:modified nanoscale Fe/Cu bimetal;;permeable reactive barrier(PRB);;2,4-dichlorophenol;;dechlorination
  • 中文刊名:中国环境科学
  • 英文刊名:China Environmental Science
  • 机构:天津城建大学环境与市政工程学院天津市水质科学与技术重点实验室;
  • 出版日期:2019-09-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:09
  • 基金:国家自然科学基金资助项目(51478292)
  • 语种:中文;
  • 页:207-214
  • 页数:8
  • CN:11-2201/X
  • ISSN:1000-6923
  • 分类号:X523
摘要
使用羧甲基纤维素钠(CMC)对纳米零价铁(NZVI)改性,并将铜(Cu)作为复合金属,制得改性纳米Fe/Cu双金属.同时采用模拟反应柱模拟可渗透反应墙(PRB)去除地下水中2,4-二氯苯酚(2,4-DCP)的反应过程.改性前后材料的表征以及沉降实验结果表明,改性后的材料有更强分散性.通过考察污染物浓度、材料投加量、Cu的负载率、pH值、流量等因素对降解2,4-DCP的影响,结果表明:反应过程符合一级动力学模型,较低的pH值与较小的流速以及10%的Cu负载率有利于2,4-DCP脱氯,过多的材料投加量和过高的初始2,4-DCP浓度不利于其脱氯.
        Nano zero-valent iron(NZVI) was modified by carboxymethylcellulose sodium(CMC) and copper(Cu) was used as composite metal to prepare modified nanoscale Fe/Cu bimetal. A reaction column was used to simulate the reaction process of 2,4-dichlorophenol(2,4-DCP) removal from groundwater by permeable reactive barrier(PRB). The characterization of the modified materials and the results of the sedimentation experiments showed that the modified materials had stronger dispersity. The effects of concentration of pollutant, dosage of materials, copper loading rate, pH and flow rate on degradation of 2,4-DCP were investigated andthe result showed that the reaction process followed the pseudo first-order kinetics, lower pH, lower flow rate and 10% copper loading rate were beneficial to the dechlorination of 2,4-DCP, and too high dosage of materials and excessive initial concentration of 2,4-DCP were not conducive to dechlorination.
引文
[1] Bhattacharya S S, Banerjee R. Laccase mediated biodegradation of2,4-dichlorophenol using response surface methodology[J].Chemosphere, 2008,73(1):81-85.
    [2] Puyol D, Mohedano A F, Sanz J L, et al. Comparison of UASB and EGSB performance on the anaerobic biodegradation of 2,4-dichlorophenol[J]. Chemosphere, 2009,76(9):1192-1198.
    [3] Vione D, Minero C, Housari F, et al. Photoinduced transformation processes of 2,4-dichlorophenol and 2,6-dichlorophenol on nitrate irradiation[J]. Chemosphere, 2007,69(10):1548-1554.
    [4] Keith L H, Telliard W A. Priority pollutants. I. A perspective view[J].Environmental Science and Technology, 1979,13(4):416-423.
    [5] Choi J H, Kim Y H, Choi S J. Reductive dechlorination and biodegradation of 2,4,6-trichlorophenol using sequential permeable reactive barriers:Laboratory studies[J]. Chemosphere, 2007,67(8):1551-1557.
    [6] Gillham R W, O'Hannesin S F. Enhanced degradation of halogenated aliphatics by zero-valent iron[J]. Groundwater, 1994,32(6):958-967.
    [7] Laumann S, Mici?V, Hofmann T. Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes[J]. Water Research, 2014,50(1):70-79.
    [8] Lien H L, Zhang W X. Transformation of chlorinated methanes by nanoscale iron particles[J]. Journal of Environmental Engineering,1999,125(11):1042-1047.
    [9] Shahwan T,üzüm,?, Ero?Lu A E, et al. Synthesis and characterization of bentonite/iron nanoparticles and their application as adsorbent of cobalt ions[J]. Applied Clay Science, 2010,47(3):257-262.
    [10] Zhao X, Liu W, Cai Z, et al. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation[J]. Water Research, 2016,100:245-266.
    [11] Zhao X, Liu W, Cai Z, et al. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation[J]. Water Research, 2016,100:245-266.
    [12]张永祥,常杉,李飞,等.稳定型纳米零价铁去除地下水中2,4-二氯苯酚[J].环境科学, 2017,38(6):2385-2392.Zhang Y X, Chang S, Li F, et al. Removal of 2,4-dichlorophenol in underground water by stabilized nano zerovalent iron[J].Environmental Sciences, 2017,38(6):2385-2392.
    [13] Hang J I, Xian H E, Cao X, et al. Removal of chromium(VI)in water by carboxymethyl cellulose stabilized nano zero-valent iron[Z].Geoscience, 2013,27(6):1484-1488.
    [14] Mallát T, Bodnár Z, PetróJ. Reduction by dissolving bimetals[J].Tetrahedron, 1991,47(3):441-446.
    [15] Yang M X, Sutapa S, Bent E B, et al. Degradation of multiplychlorinated hydrocarbons on Cu(100)[J]. Langmuir, 1997,13(2):127-137.
    [16]潘煜,孙力平,张婷婷,等.CMC改性的纳米Fe/Cu双金属去除2,4-二氯苯酚的研究[J].环境科学学报, 2019,39(4):1174-1182.Pan Y, Sun L P, Zhang T T, et al. Study on removal of 2,4-dichlorophenol by CMC modified nanoscale Fe/Cu bimetal[J]. Acta Scientiae Circumstantiae, 2019,39(4):1174-1182.
    [17] Comba S, Sethi R. Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum[J]. Water Research, 2009,43(15):3717-26.
    [18] Feng H, Zhao D. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water[J]. Environmental Science&Technology, 2005,39(9):3314-3320.
    [19]刘园园,高松,邱明英,等.强化的零价铁PRB技术对PCBs污染地下水的修复[J].生态环境学报, 2012,21(4):733-736.Liu Y Y, Gao S, Qiu M Y, et al. Enhanced Fe0PRB technology for the remediation of PCBs contaminated groundwater[J]. Ecology and Environment Sciences, 2012,21(4):733-736.
    [20] Yang J, Cao L, Guo R, et al. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water[J]. Journal of Hazardous Materials, 2010,184(1-3):782-787.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700