用户名: 密码: 验证码:
5种甲氧基多溴联苯醚的羟基化产物测定及反应机理分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Detection of hydroxylated products of five MeO–PBDEs with hydroxyl radical and analysis of the reaction mechanism
  • 作者:薛伟锋 ; 贺舒文 ; 曹文军 ; 侯辰侠 ; 刘东言 ; 刘水琳 ; 马玉良 ; 姜婷婷
  • 英文作者:XUE Weifeng;HE Shuwen;CAO Wenjun;HOU Chenxia;LIU Dongyan;LIU Shuilin;MA Yuliang;JIANG Tingting;Inspection and Quarantine Technical Center of Dalian Entry-Exit Inspection and Quarantine Bureau;School of Environmental Sciences & Technology, Dalian University of Technology;
  • 关键词:甲氧基多溴联苯醚 ; 羟基自由基 ; 羟基化产物
  • 英文关键词:methoxylated polybrominated diphenyl ethers;;hydroxyl radical;;hydroxylated products
  • 中文刊名:化学分析计量
  • 英文刊名:Chemical Analysis and Meterage
  • 机构:大连出入境检验检疫局检验检疫技术中心;大连理工大学环境学院;
  • 出版日期:2019-08-01
  • 出版单位:化学分析计量
  • 年:2019
  • 期:S1
  • 基金:辽宁省自然科学基金面上项目(20170540025)
  • 语种:中文;
  • 页:17-22
  • 页数:6
  • CN:37-1315/O6
  • ISSN:1008-6145
  • 分类号:O643.12;X832
摘要
测定天然水环境中检出的4’-MeO-BDE-17,5-MeO-BDE-47,5’-MeO-BDE-99,6-MeO-BDE-47和6-MeOBDE-85 5种甲氧基多溴联苯醚(MeO-PBDEs)与羟基自由基(·OH)反应的羟基化产物(HO-MeO-PBDEs)。采用实验检测与量子化学计算相结合的方法推测出可能生成的HO-MeO-PBDEs产物。5种MeO-PBDEs与·OH反应的产物中,只在5-MeO-BDE-47溶液中检出一种HO-MeO-PBDEs产物,来源于5-MeO-BDE-47的·OH加成反应,量子化学计算预测该产物可能为5-MeO-5’-HO-BDE-47,其余4种MeO-PBDEs溶液中均未检出HO-MeO-PBDEs产物。甲氧基和溴取代模式可以显著影响MeO-PBDEs生成HO-MeO-PBDEs产物。
        Five MeO-PBDEs including 4'-MeO-BDE-17,5-MeO-BDE-47,5'-MeO-BDE-99,6-MeO-BDE-47 and 6-MeO-BDE-85 were selected to detect their hydroxylated products(HO-MeO-PBDEs) in the reaction with hydroxyl radical( · OH). HO-MeO-PBDEs were deduced by experimental detection combined with quantum chemical computation methods. Among five MeO-PBDEs, only one HO-MeO-PBDEs product was detected for 5-MeO-BDE-47 arising from · OH addition, which was hypothesized to be 5-MeO-5'-HO-BDE-47 by quantum chemical computation. No HO-MeO-PBDEs products can be detected for other four MeO-PBDEs. The generation of HO-MeO-PBDEs products between MeO-PBDEs and · OH is susceptible to substitution patterns of bromine andmethoxyl substituent of MeO-PBDEs.
引文
[1] KIM U J, YEN N T H, OH J E. Hydroxylated,methoxylated,and parent polybrominateddiphenyl ethers(PBDEs)in the inlandenvironment, Korea and potential OH–and MeO-BDE source[J].Environmental science&technology,2014,48(13):7 245–7 253.
    [2] VETTER W, HAASE–ASCHOFF P, ROSENFELDER N, et al.Determination of halogenated natural products in passive samplers deployed along the Great Barrier Reef,Queensland Australia[J]. Environmental science&technology,2009,43(16):6 131–6 137.
    [3] BRADLEY P W, WAN Y, JONES P D, et al. PBDEs and methoxylated analogues in sediment cores from two Michigan,USA,inland lakes[J]. Environmental toxicology&chemistry,2011,30(6):1 236–1 242.
    [4] CANTON R F, SANDERSON J T, LETCHER R J, et al. Inhibition and induction of aromatase(CYP19)activity by brominated?ame retardants in H295R human adrenocortical carcinoma cells[J].Toxicological sciences,2005,88(2):447–455.
    [5] KOJIMA H, TAKEUCHIi S, URAMARU N, et al. Nuclear hormone receptor activity of polybrominateddiphenyl ethers and their hydroxylated and methoxylated metabolites in transactivation assays using chinese hamster ovary cells[J]. Environmental health perspectives,2009,117(8):1 210–1 218.
    [6] UCAN–MARIN F, ARUKWE A, MORTENSEN A, et al. Recombinant transthyretin puri?cation and competitive binding with organohalogen compounds in two gull species(Larusargentatus and Larushyperboreus)[J]. Toxicological sciences,2009,107(2):440–450.
    [7] UCAN–MARIN F, ARUKWE A, MORTENSEN A S,et al. Recombinant albumin and transthyretin transport proteins from two gull species and human:chlorinated and brominated contaminant binding and thyroid hormones[J]. Environmental science&technology,2010,44(1):497–504.
    [8] SU G Y, XIA J, LIU H L, et al. Dioxin-like potency of HO–and MeO–analogues of PBDEs’ the potential risk throughconsumption of?sh from Eastern China[J]. Environmental science&technology,2012,46(19):10 781–10 788.
    [9] ZAFIRIOU O C, JOUSSOT–DUBIEN J, ZEPP R G, et al. Photochemistry of natural waters[J]. Environmental science&technology,1984,18:A358–A371.
    [10] MOPPER K, Zhou X L. Hydroxyl radical photoproduction in the sea and its potential impact on marine processes[J]. Science,1990,250(4 981):661–664.
    [11] TAKEDA K,TAKEDOI H,YAMAJI S,et al. Determination of hydroxyl radical photoproduction rates in natural waters[J].Analytical sciences,2004,20(1):153–158.
    [12]贺舒文,薛伟锋,姜婷婷,等. 5种甲氧基多溴联苯醚与羟基自由基的二级反应速率常数的测定及反应活性分析[J].化学分析计量,2019,28(3):43–48.
    [13] LI P, DONG W B, ZHANG R X, et al. Different reaction mechanisms of diphenylether and 4-bromodiphenylether with nitrous acid in the 355 nm laser?ash photolysis of mixed aqueous solution[J]. Chemosphere,2008,71(8):1 494–1 501.
    [14] LUO S,YANG S G,XUE Y G,et al. Two-stage reduction/subsequent oxidation treatment of 2,2’,4,4’-tetrabromodiphenyl ether in aqueous solutions:kinetic,pathway and toxicity[J].Journal of hazardous materials,2011,192(3):1 795–1 803.
    [15] RAFF G D,Hites R A. Gas-phase reactions of brominated diphenyl ethers with OH radicals[J]. Journal of physical Chemistry A,2006,110(37):10 783–10 792.
    [16] XIE Q, CHEN J W, ZHAO H X, et al. Distinct photoproducts ofhydroxylated polybromodiphenyl ethers from different photodegradation pathways:a case study of 2’-HO-BDE-68[J].Environmental science-processes&impacts,2015,17(2):351–357.
    [17] FAHEY S J,GARSON M J. Geographic variation of natural products of tropical nudibranch Asteronotus cespitosus[J].Journal of chemical ecololgy,2002,28(9):1 773–1 785.
    [18] FU X,SCHMITZ F J,GOVINDAN M,et al. Enzyme inhibitors:New and known polybrominated phenols and diphenyl ethers from four Indo-Paci?c Dysidea sponges[J]. Journal of natural products,1995,58(9):1 384–1 391.
    [19] LIU H, NAMIKOSHI M, MEGURO S, et al. Isolation and characterization of polybrominated diphenyl ethers as inhibitors of microtubule assembly from the marine sponge phyllospongia dendyi at Palau[J]. Journal of natural products,2004,67(3):472–474.
    [20] NORTON R S,CROFT K D,WELLS R J. Polybrominated oxydiphenol derivatives from the sponge Dysidea herbacea.Structure determination by analysis of 13C spin-lattice relaxation data for quaternary carbons and 13C–1H coupling constants[J].Tetrahedron,1981,37(13):2 341–2 349.
    [21] AN J,LI S H,ZHONG Y F,et al. The cytotoxic effects of synthetic 6-hydroxylated and 6-methoxylated polybrominated diphenyl ether 47(BDE47)[J]. Environmental toxicology,2011,26(6):591–599.
    [22] DINGEMANS M M L,DE GROOT A,VAN KLEEF R G D M,et al. Hydroxylation increases the neurotoxic potential of BDE–47to affect exocytosis and calcium homeostasis in PC12 cells[J].Environmental health perspectives,2008,116(5):637–643.
    [23] WISEMAN S B,WAN Y,CHANG H,et al. Polybrominated diphenyl ethers and their hydroxylated-methoxylated analogs:Environmental sources,metabolic relationships,and relative toxicities[J]. Marine pollution bulletin,2011,63(5–12):179–188.
    [24] MEERTS I,LETCHER R J,HOVING S,et al. In vitro estrogenicity of polybrominated diphenyl ethers,hydroxylated PBDEs,and polybrominated bisphenol A compounds[J].Environmental health perspectives,2001,109(4):399–407.
    [25] JI K,CHOI K,GIESY J P,et al. Genotoxicity of several polybrominated diphenyl ethers(PBDEs)and hydroxylated PBDEs,and their mechanisms of toxicity[J]. Environmental science&technology,2011,45(11):5 003–5 008.
    [26] XIE Q,CHEN J W,ZHAO H X,et al. Different photolysis kineticsand photooxidationreactivities of neutral and anionic hydroxylated polybrominateddiphenyl ethers[J]. Chemosphere,2013,90(2):188–194.
    [27] MONOD A,POULAIN L,GRUBERT S,et al. Kinetics ofOH–initiated oxidation of oxygenated organic compounds in theaqueous phase:new rate constants,structure-activity relationshipsand atmospheric implications[J]. Atmospheric environment,2005,39(40):7 667–7 688.
    [28] ATHANASIADOU M,MARSH G,ATHANASSIADIS I,et al. Gas chromatography and mass spectrometry of methoxylatedpolybrominated diphenyl ethers(MeO–PBDEs)[J].Journal ofmass spectrometry,2006,41(6):790–801.
    [29] FRISCH M J,TRUCKS G W,SCHLEGEL H B,et al. Gaussian09,Revision A.02[CP]. Gaussian,Inc:Wallingford,CT,2009.
    [30] ZHAO Y,TRUHLAR D G. Hybrid meta density functional theory methods for thermochemistry,thermochemical kinetics,and noncovalent interactions:the MPW1B95 and MPWB1K methods and comparative assessments for hydrogen bonding and van der waals interactions[J]. Journal of physical chemistry A,2004,108(33):6 908–6 918.
    [31] YU W N,HU J T,XU F,et al. Mechanism and direct kinetics study on the homogeneous gas-phase formation of PBDD/Fs from 2-BP,2,4-DBP,and 2,4,6-TBP as precursors[J].Environmental science&technology,2011,45(5):1 917–1 925.
    [32] QU X H,WANG H,ZHANG Q Z,et al. Mechanistic and kinetic studies on the homogeneous gas-phase formation of PCDD/Fs from 2,4,5-trichlorophenol[J]. Environmental science&technology,2009,43(11):4 068–4 075.
    [33] XU F,WANG H,ZHANG Q Z,et al. Kinetic properties for the complete series reactions of chlorophenols with OH radicalsrelevance for dioxin formation[J]. Environmental science&technology,2010,44(4):1 399–1 404.
    [34] FUKUI K. The path of chemical reactions-the IRC approach[J].Accounts of chemical research,1981,14(12):363–368.
    [35] BARONE V,COSSI M,TOMASI J. Geometry optimization of molecular structures in solution by the polarizable continuum model[J]. Journal of computational chemistry,1998,19(4):404–417.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700