用户名: 密码: 验证码:
兽用抗生素磺胺二甲嘧啶对稻田N_2O排放的影响及其微生物机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of the Veterinary Antibiotic Sulfamethazine on N_2O Emissions and the Associated Microbiological Mechanism in a Rice Field
  • 作者:吴杰 ; 李志琳 ; 徐佳迎 ; 王珏 ; 蒋静
  • 英文作者:WU Jie;LI Zhi-lin;XU Jia-ying;WANG Jue;JIANG Jing-yan;College of Resource and Environmental Sciences,Nanjing Agricultural University;
  • 关键词:磺胺二甲嘧啶(SMZ) ; 稻田 ; N_2O排放 ; 猪粪 ; 硝化反硝化过程
  • 英文关键词:sulfamethazine(SMZ);;paddy field;;N_2O emissions;;pig manure;;nitrification and denitrification processes
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:南京农业大学资源与环境科学学院;
  • 出版日期:2019-01-20 17:30
  • 出版单位:环境科学
  • 年:2019
  • 期:06
  • 基金:国家自然科学基金项目(41675148,41375150)
  • 语种:中文;
  • 页:357-367
  • 页数:11
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X71
摘要
为研究磺胺类兽用抗生素对稻田N_2O排放的影响及其微生物机制,采用田间原位观测试验,对比分析不同浓度磺胺二甲嘧啶(sulfamethazine,SMZ)对稻田N_2O排放及硝化反硝化过程底物和相关功能基因丰度的影响.本试验共设5个处理,分别为:无肥料无抗生素(CK);猪粪为基肥,尿素为追肥,分别添加0、5、15和30 mg·kg~(-1)的SMZ处理(SMZ0、SMZ5、SMZ15和SMZ30),在整个水稻生长季定期采集和分析土壤和气体样品.结果表明,不同浓度SMZ均未改变稻田N_2O排放的季节性规律,整个观测期N_2O排放通量,与SMZ0处理相比,SMZ15有显著差异(P <0. 05),SMZ30和SMZ5无显著差异(P> 0. 05).中、高浓度处理SMZ15和SMZ30在均值水平上增加了N_2O累积排放量,分别是SMZ0处理的3. 47和4. 67倍,且增加了土壤NO_3~--N含量.与SMZ0处理相比,中、高浓度处理对土壤总细菌16S rRNA基因丰度、硝化过程中氨氧化古菌AOA amoA和氨氧化细菌AOB amoA基因丰度以及反硝化过程中的nirK、nirS和nosZ基因丰度均有明显的激活作用(P <0. 05),低浓度处理SMZ5对各基因丰度则有轻微抑制作用.具体表现为SMZ30、SMZ15与SMZ0处理的16S rRNA、AOA amoA、AOB amoA以及nirK、nirS、nosZ基因丰度比值的平均值分别为:1. 58、1. 77、2. 15、1. 38、1. 33、1. 42和1. 24、1. 37、1. 08、1. 65、1. 11、1. 64,而SMZ5与SMZ0处理的6个上述基因丰度比值均小于1,仅分别为0. 80、0. 99、0. 92、0. 76、0. 76和0. 77. N_2O排放通量与nir K基因丰度呈极显著正相关(P <0. 01),表明SMZ通过影响反硝化菌活性进而对N_2O排放产生作用.因此,兽用抗生素对农田的污染不可忽视,应从源头上合理控制使用,以减少其环境生态风险.
        Veterinary antibiotics can enter into croplands with animal excrement and can have effects on nitrification and denitrification processes in the agricultural soils. A field experiment was conducted to evaluate the effect of sulfamethazine(SMZ) on N_2O emissions,nitrification,denitrification,and related functional gene abundances within a paddy field. Five treatments were used in the experiment,namely,no fertilizer and no antibiotics applied(CK),and pig manure used as basal fertilizer plus urea applied as topdressing with the addition of 0,5,15,and 30 mg·kg~(-1) SMZ(SMZ0,SMZ5,SMZ15,and SMZ30,respectively). Soil and gas samples were collected and analyzed periodically throughout the rice growing season. The results showed that the SMZ did not change the seasonal pattern of N_2O emissions. During the entire observation period,there was a significant difference in N_2O fluxes between the SMZ15 and SMZ0 treatment(P < 0. 05),but there was no significant differences in N_2O fluxes between the SMZ30,SMZ5,and SMZ0 treatment(P >0. 05). Medium and high concentrations(SMZ15,SMZ30) increased the cumulative emissions of N_2O at the average level,and these values were 3. 47 and 4. 67 times higher than that of the SMZ0 treatment,respectively; the soil NO_3~--N content also increased.Medium and high concentrations had a significant activation effect on the gene abundances of total soil bacteria 16S rRNA,ammoniaoxidizing archaea(AOA) amo A,and ammonia-oxidizing bacteria(AOB) amo A during the nitrification process and the gene abundances of nirK,nirS,and nosZ during the denitrification process(P < 0. 05),while the SMZ treatment with a low concentration had a slight inhibitory effect on the abundance of each gene. The ratios of abundance copies of 16 S rRNA,AOA amo A,AOB amo A,and the genes of nirK,nirS,and nosZ treated by SMZ30,SMZ15,and SMZ0 were 1. 58,1. 77,2. 15,1. 38,1. 33,1. 42,and 1. 24,1. 37,1. 08,1. 65,1. 11,1. 64,respectively,at the average level. The abundance ratios of the six above genes treated by SMZ5 and SMZ0 were less than one and only 0. 80,0. 99,0. 92,0. 76,0. 76,and 0. 77,respectively. The N_2O fluxes were significantly and positively correlated with the abundances of the nirK gene(P < 0. 01),thus indicating that SMZ had an effect on N_2O emissions by influencing the activity of denitrifying bacteria. Therefore,the pollution of farmland by veterinary antibiotics should not be ignored,and the use of antibiotics should be controlled reasonably at the source,so as to reduce the environmental and ecological risks.
引文
[1] IPCC. Climate Change 2013:The physical science basis.Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[R]. Cambridge:Cambridge University Press,2013.
    [2] IPCC. Climate Change 2007:The physical science basis.Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change[R]. Cambridge:Cambridge University Press,2007.
    [3]李平,郎漫.硝化和反硝化过程对林地和草地土壤N2O排放的贡献[J].中国农业科学,2013,46(22):4726-4732.Li P,Lang M. Contribution of nitrification and denitrification to the nitrous oxide emission from forest and grassland soils[J].Scientia Agricultura Sinica,2013,46(22):4726-4732.
    [4] Nan W G,Yue S C,Li S Q,et al. Characteristics of N2O production and transport within soil profiles subjected to different nitrogen application rates in China[J]. Science of the Total Environment,2016,542:864-875.
    [5] Zou J W,Huang Y,Zheng X H,et al. Quantifying direct N2O emissions in paddy fields during rice growing season in mainland China:dependence on water regime[J]. Atmospheric Environment,2007,41(37):8030-8042.
    [6]朱永官,王晓辉,杨小茹,等.农田土壤N2O产生的关键微生物过程及减排措施[J].环境科学,2014,35(2):792-800.Zhu Y G,Wang X H,Yang X R,et al. Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation strategies[J]. Environmental Science,2014,35(2):792-800.
    [7]金彩霞,司晓薇,王万峰,等.不同形态磺胺类药物在根-土界面的空间分布及毒性评价[J].环境科学,2017,38(4):1683-1688.Jin C X,Si X W,Wang W F,et al. Forms distribution and ecotoxicity of three forms of sulfonamides in root-soil interface of maize[J]. Environmental Science,2017,38(4):1683-1688.
    [8]赵方凯,杨磊,乔敏,等.土壤中抗生素的环境行为及分布特征研究进展[J].土壤,2017,49(3):428-436.Zhao F K,Yang L,Qiao M,et al. Environmental behavior and distribution of antibiotics in soils:a review[J]. Soils,2017,49(3):428-436.
    [9]刘款,孙明明,刘满强,等.土壤反硝化对磺胺嘧啶及抗性基因消减的影响[J].土壤,2017,49(3):482-491.Liu K, Sun M M, Liu M Q, et al. Effects of anaerobic denitrification on the dissipation of sulfadiazine and resistance genes in soil[J]. Soils,2017,49(3):482-491.
    [10]杨腾飞,张小寒,黄铄淇,等.磺胺甲恶唑和甲氧苄啶对生物脱氮过程的影响规律[J].环境化学,2018,37(3):471-479.Yang T F, Zhang X H, Huang S Q, et al. Effect of sulfamethoxazole and trimethoprim on biological nitrogen removal[J]. Environmental Chemistry,2018,37(3):471-479.
    [11]王娜,王昝畅,郭欣妍,等.兽药抗生素环境风险控制管理政策探析[J].生态与农村环境学报,2017,33(7):586-591.Wang N,Wang Z C,Guo X Y,et al. Management policies for control of environmental risks of veterinary antibiotics[J].Journal of Ecology and Rural Environment,2017,33(7):586-591.
    [12] Fang H,Han Y L,Yin Y M,et al. Variations in dissipation rate,microbial function and antibiotic resistance due to repeated introductions of manure containing sulfadiazine and chlortetracycline to soil[J]. Chemosphere,2014,96:51-56.
    [13] Tasho R P,Cho J Y. Veterinary antibiotics in animal waste,its distribution in soil and uptake by plants:a review[J]. Science of the Total Environment,2016,563-564:366-376.
    [14] Everts S. Drugs in the environment:Stakeholders consider ways to reduce the IMPACT of DRUGS that get past sewage treatment plants and into nature[J]. Chemical&Engineering News,2010,88(13):23-24.
    [15] Ma J W,Lin H,Sun W C,et al. Soil microbial systems respond differentially to tetracycline, sulfamonomethoxine, and ciprofloxacin entering soil under pot experimental conditions alone and in combination[J]. Environmental Science and Pollution Research,2014,21(12):7436-7448.
    [16] Ding G C,Radl V,Schloter-Hai B,et al. Dynamics of soil bacterial communities in response to repeated application of manure containing sulfadiazine[J]. PLo S One,2014,9(3):e92958.
    [17]邰义萍,罗晓栋,莫测辉,等.广东省畜牧粪便中喹诺酮类和磺胺类抗生素的含量与分布特征研究[J].环境科学,2011,32(4):1188-1193.Tai Y P,Luo X D,Mo C H,et al. Occurrence of quinolone and sulfonamide antibiotics in swine and cattle manures from largescale feeding operations of Guangdong province[J].Environmental Science,2011,32(4):1188-1193.
    [18]刘锋,廖德润,李可,等.畜禽养殖基地磺胺类喹诺酮类和大环内酯类抗生素污染特征[J].农业环境科学学报,2013,32(4):847-853.Liu F,Liao D R,Li K,et al. Pollution characteristics of the sulfonamides,quinolones and macrolides in the samples collected from livestock and poultry feedlots[J]. Journal of AgroEnvironment Science,2013,32(4):847-853.
    [19] Ji X L,Shen Q H,Liu F,et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai;China[J]. Journal of Hazardous Materials,2012,235-236:178-185.
    [20] Huang X F,Feng Y,Hu C,et al. Mechanistic model for interpreting the toxic effects of sulfonamides on nitrification[J].Journal of Hazardous Materials,2016,305:123-129.
    [21] Ahmad M,Vithanage M,Kim K,et al. Inhibitory effect of veterinary antibiotics on denitrification in groundwater:a microcosm approach[J]. The Scientific World Journal,2014,2014:879831.
    [22] Vaclavik E,Halling-S?rensen B,Ingerslev F. Evaluation of manometric respiration tests to assess the effects of veterinary antibiotics in soil[J]. Chemosphere,2004,56(7):667-676.
    [23] Huang S H,Pant H K,Lu J. Effects of water regimes on nitrous oxide emission from soils[J]. Ecological Engineering,2007,31(1):9-15.
    [24]贺纪正,张丽梅.土壤氮素转化的关键微生物过程及机制[J].微生物学通报,2013,40(1):98-108.He J Z,Zhang L M. Key processes and microbial mechanisms of soil nitrogen transformation[J]. Microbiology China,2013,40(1):98-108.
    [25] Wang Y S,Wang Y H. Quick measurement of CH4,CO2and N2O emissions from a short-plant ecosystem[J]. Advances in Atmospheric Sciences,2003,20(5):842-844.
    [26] Ovre?s L, Forney L, Daae F L, et al. Distribution of bacterioplankton in meromictic lake saelenvannet,as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA[J]. Applied and Environmental Microbiology,1997,63(9):3367-3373.
    [27] Tourna M,Freitag T E,Nicol G W,et al. Growth,activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms[J]. Environmental Microbiology,2008,10(5):1357-1364.
    [28] Stephen J R,Chang Y J,Macnaughton S J,et al. Effect of toxic metals on indigenous soilβ-subgroup proteobacterium ammonia oxidizer community structure and protection against toxicity by inoculated metal-resistant bacteria[J]. Applied and Environmental Microbiology,1999,65(1):95-101.
    [29] Henry S,Baudoin E,López-Gutiérrez J C,et al. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR[J]. Journal of Microbiological Methods,2004,59(3):327-335.
    [30] Braker G,Fesefeldt A,Witzel K P. Development of PCR primer systems for amplification of nitrite reductase genes(nirK and nirS)to detect denitrifying bacteria in environmental samples[J]. Applied and Environmental Microbiology,1998,64(10):3769-3775.
    [31] Scala D J,Kerkhof L J. Nitrous oxide reductase(nosZ)genespecific PCR primers for detection of denitrifiers and three nosZ genes from marine sediments[J]. FEMS Microbiology Letters,1998,162(1):61-68.
    [32]李彦文,莫测辉,赵娜,等.高效液相色谱法测定水和土壤中磺胺类抗生素[J].分析化学,2008,36(7):954-958.Li Y W,Mo C H,Zhao N,et al. Determination of sulfonamides antibiotics in water and soil using high performance liquid chromatography[J]. Chinese Journal of Analytical Chemistry,2008,36(7):954-958.
    [33] Pan M,Chu L M. Adsorption and degradation of five selected antibiotics in agricultural soil[J]. Science of the Total Environment,2016,545-546:48-56.
    [34]许静,王娜,孔德洋,等.有机肥源磺胺类抗生素在土壤中的降解规律及影响因素分析[J].环境科学学报,2015,35(2):550-556.Xu J,Wang N,Kong D Y,et al. Dynamics and degradation mechanism of antibiotic sulfonamides in soils with organic manure amendment[J]. Acta Scientiae Circumstantiae,2015,35(2):550-556.
    [35]付袁芝.磺胺二甲基嘧啶降解菌的筛选及降解特性研究[D].哈尔滨:哈尔滨工业大学,2018.
    [36] Shan J,Yang P P,Rahman M M,et al. Tetracycline and sulfamethazine alter dissimilatory nitrate reduction processes and increase N2O release in rice fields[J]. Environmental Pollution,2018,242:788-796.
    [37] Hou L J,Yin G Y,Liu M,et al. Effects of sulfamethazine on denitrification and the associated N2O release in estuarine and coastal sediments[J]. Environmental Science&Technology,2015,49(1):326-333.
    [38]鲍陈燕.猪粪对抗生素在农田系统中行为的影响[D].杭州:浙江大学,2016.
    [39] Hao X,Xu S,Larney F J,et al. Inclusion of antibiotics in feed alters greenhouse gas emissions from feedlot manure during composting[J]. Nutrient Cycling in Agroecosystems,2011,89(2):257-267.
    [40]国彬,姚丽贤,刘忠珍,等.磺胺类兽药对土壤生化功能及氮素的影响[J].土壤,2012,44(4):596-600.Guo B, Yao L X, Liu Z Z, et al. Effects of sulfonamide veterinary drugs on soil biochemical function and nitrogen[J].Soils,2012,44(4):596-600.
    [41]国彬,姚丽贤,刘忠珍,等.磺胺类兽药对土壤微生物数量的影响[J].环境化学,2012,31(7):1009-1015.Guo B,Yao L X,Liu Z Z,et al. The impact of sulfonamide veterinary drugs on soil microbes quantity[J]. Environmental Chemistry,2012,31(7):1009-1015.
    [42] Awad Y M,Ok Y S,Igalavithana A D,et al. Sulphamethazine in poultry manure changes carbon and nitrogen mineralisation in soils[J]. Chemistry and Ecology,2016,32(10):899-918.
    [43]牛建平,吴泽辉,石起增.磺胺二甲嘧啶在土壤中的降解动态研究[J].安徽农业科学,2009,37(4):1767-1769.Niu J P,Wu Z H,Shi Q Z. Research on the degradation dynamic of sulfamethazine in the soil[J]. Journal of Anhui Agricultural Sciences,2009,37(4):1767-1769.
    [44] Smith J M, Ogram A. Genetic and functional variation in denitrifier populations along a short-term restoration chronosequence[J]. Applied and Environmental Microbiology,2008,74(18):5615-5620.
    [45] Yoshida M,Ishii S,Otsuka S,et al. nirK-harboring denitrifiers are more responsive to denitrification-inducing conditions in rice paddy soil than nir S-harboring bacteria[J]. Microbes and Environments,2010,25(1):45-48.
    [46] Szukics U, Hackl E, Zechmeister-Boltenstern S, et al.Contrasting response of two forest soils to nitrogen input:rapidly altered NO and N2O emissions and nir K abundance[J]. Biology and Fertility of Soils,2009,45(8):855-863.
    [47] Morales S E,Cosart T,Holben W E. Bacterial gene abundances as indicators of greenhouse gas emission in soils[J]. The ISME Journal,2010,4(6):799-808.
    [48]曾希柏,王亚男,王玉忠,等.施肥对设施菜地nirK型反硝化细菌群落结构和丰度的影响[J].应用生态学报,2014,25(2):505-514.Zeng X B,Wang Y N,Wang Y Z,et al. Effects of different fertilization regimes on abundance and community structure of the nirK-type denitrifying bacteria in greenhouse vegetable soils[J].Chinese Journal of Applied Ecology,2014,25(2):505-514.
    [49] Kleineidam K, Sharma S, Kotzerke A, et al. Effect of sulfadiazine on abundance and diversity of denitrifying bacteria by determining nirK and nirS genes in two arable soils[J].Microbial Ecology,2010,60(4):703-707.
    [50] Kotzerke A, Klemer S, Kleineidam K, et al. Manure contaminated with the antibiotic sulfadiazine impairs the abundance of nirK-and nirS-type denitrifiers in the gut of the earthworm eisenia fetida[J]. Biology and Fertility of Soils,2010,46(4):415-418.
    [51] Li S Q,Song L N,Jin Y G,et al. Linking N2O emission from biochar-amended composting process to the abundance of denitrify(nirK and nosZ)bacteria community[J]. AMB Express,2016,6:37.
    [52]卢静,刘金波,盛荣,等.短期落干对水稻土反硝化微生物丰度和N2O释放的影响[J].应用生态学报,2014,25(10):2879-2884.Lu J,Liu J B,Sheng R,et al. Effect of short-time drought process on denitrifying bacteria abundance and N2O emission in paddy soil[J]. Chinese Journal of Applied Ecology,2014,25(10):2879-2884.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700