用户名: 密码: 验证码:
粉煤灰对模拟河流中DMP的动态吸附
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic adsorption of dimethyl phthalate onto fly ash in the simulated river
  • 作者:李萌 ; 陈爱侠 ; 陈贝 ; 胡卫星 ; 孟建昊 ; 韩融
  • 英文作者:LI Meng;CHEN Aixia;CHEN Bei;HU Weixing;MENG Jianhao;HAN Rong;School of Environmental Science and Engineering, Chang'an University;Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education;Chang'an University Haiwei Environmental Technology Company;
  • 关键词:河流突发污染事故 ; 塑料增塑剂污染 ; 邻苯二甲酸二甲酯 ; 粉煤灰 ; 模拟河流
  • 英文关键词:udden river pollution accidents;;plastic plasticizer pollution;;dimethyl phthalate;;fly ash;;simulated river
  • 中文刊名:环境工程学报
  • 英文刊名:Chinese Journal of Environmental Engineering
  • 机构:长安大学环境科学与工程学院;旱区地下水文与生态效应教育部重点实验室;长安大学海威环境技术公司;
  • 出版日期:2019-05-05 14:25
  • 出版单位:环境工程学报
  • 年:2019
  • 期:05
  • 基金:国家自然科学基金青年基金资助项目(21407012);; 陕西省自然科学基金基础研究计划项目(2015JQ5178)
  • 语种:中文;
  • 页:90-96
  • 页数:7
  • CN:11-5591/X
  • ISSN:1673-9108
  • 分类号:X52
摘要
针对污染物泄露导致的河流污染问题,以邻苯二甲酸二甲酯(DMP)为研究对象,以粉煤灰作为吸附剂、有机玻璃反应槽作为反应装置,向其持续注入初始浓度相同的DMP溶液,将其所得实验数据拟合Logistic穿透模型,研究模拟河流条件下,粉煤灰对DMP的动态吸附规律;同时,分析了水流速度、DMP初始浓度及吸附剂投加方式3种因素对粉煤灰去除DMP性能的影响。结果表明:Logistic穿透模型能较好地拟合河流中粉煤灰动态吸附DMP的过程;提高溶液的进水流速,污染物更容易穿透吸附剂表面,单位时间内的最大吸附量由17.81μg·g~(-1)增加至27.78μg·g~(-1),最大去除率由35.63%升高至55.57%,穿透时间提前;随着DMP溶液初始浓度的增加,粉煤灰与DMP分子之间的浓度差增大,相同时间内与粉煤灰接触的DMP污染物增多,达到饱和的时间由131 min缩短至119 min,穿透曲线上的穿透点左移,粉煤灰的吸附性能提高;将粉煤灰全部平铺在槽体底部时,吸附质能够充分地与其接触,传质阻力减小,吸附速率常数由0.003 9提高至0.004 7,粉煤灰的吸附率升高。该研究可为河流突发性污染的应急处理提供一定理论依据。
        For the sudden environmental problems by pollutants leakage, the dynamic adsorption of dimethyl phthalate(DMP) onto fly ash was conducted in a simulated river unit, which was made of a plexiglass reaction tank, and a continuous injection of DMP with the same initial concentration into it. The experimental data were fitted by the Logistic penetrating model, and the effects of flow rate of the river, DMP initial concentration and adsorbent dosing ways on adsorption performance of fly ash were analyzed. The results showed that the Logistic penetrating model yielded an accurate and reliable fit for the dynamic adsorption process of DMP onto fly ash with a high R2 value of 0.992. With the increase of influent flow rate, DMP could more easily penetrate the surface of adsorbent, the adsorption capacity per unit time increased from 17.81 μg·g~(-1) to 27.78 μg·g~(-1), the maximum removal rate increased from 35.63% to 55.57%, the breakthrough time was shortened accordingly. An increase of the initial concentration of DMP solution was found to enlarge the concentration difference between the DMP and the fly ash, improve DMP amount in contact with the adsorbent per unit time. Then the time to reach saturation was shorten from 131 min to 119 min, the breakthrough point on the breakthrough curve shifted to left, and the adsorption performance of fly ash was improved. A complete distribution the fly ash on the bottom of tank could form enough contact between the fly ash and DMP and reduce the mass transfer resistance, the adsorption rate coefficient increased from 0.003 9 to 0.004 7, and the adsorption capacity of fly ash increased.This study will provide some theoretical references for emergent treatment of sudden river pollution accidents.
引文
[1]陈伟锦.突发性环境污染事故的应急处理措施研究[J].环境与发展, 2017, 29(10):62-63.
    [2]陈顺利.关于突发环境污染事故应急监测[J].科技风, 2018, 30(9):38-38.
    [3] RUI Y, SHEN D, KHALID S, et al. GIS-based emergency response system for sudden water pollution accidents[J]. Physics&Chemistry of the Earth, 2015, 79-82:115-121.
    [4] YOU X Y, ZHANG C X. On real-time risk evaluation of accident in water quality control zone[J]. Ecological Indicators,2018, 93(10):123-128.
    [5] DONG L, LIU J, DU X, et al. Simulation-based risk analysis of water pollution accidents combining multi-stressors and multireceptors in a coastal watershed[J]. Ecological Indicators, 2018, 92(9):161-170.
    [6] ZHANG H, FANG D, KONG Z, et al. Enhanced adsorption of phthalic acid esters(PAEs)from aqueous solution by alkylbenzene-functionalized polypropylene nonwoven and its adsorption mechanism insight[J]. Chemical Engineering Journal, 2018,331(1):406-415.
    [7] MOAZZEN M, KHANEGHAH A M, SHARIATIFAR N, et al. Multi-walled carbon nanotubes modified with iron oxide and silver nanoparticles(MWCNT-Fe3O4/Ag)as a novel adsorbent for determining PAEs in carbonated soft drinks using magnetic SPE-GC/MS method[J]. Arabian Journal of Chemistry, 2018, 3(3):1-13.
    [8] TANG X, WANG S, YANG Y, et al. Removal of six phthalic acid esters(PAEs)from domestic sewage by constructed wetlands[J]. Chemical Engineering Journal, 2015, 275(9):198-205.
    [9]阙付有,曾抗美,李旭东. ACF吸附法处理苯酚泄漏造成的河流突发污染事故模拟研究[J].环境科学学报, 2008, 28(12):2554-2561.
    [10]高旭,刘宇飞,郭劲松,等.活性炭和沸石滤柱对饮用水中邻苯二甲酸酯类吸附性能的比较[J].水处理技术,2009,35(3):57-61.
    [11] JIA H, CAO Y, QU G, et al. Dimethyl phthalate contaminated soil remediation by dielectric barrier discharge:Performance and residual toxicity[J]. Chemical Engineering Journal, 2018, 351(11):1076-1084.
    [12]王雪雁.河流水体和沉积物中PAEs的污染特征及吸附研究:以皂河和灞河为例[D].西安:长安大学, 2017.
    [13]沙玉娟,夏星辉,肖翔群.黄河中下游水体中邻苯二甲酸酯的分布特征[J].中国环境科学, 2006, 26(1):120-124.
    [14]刘新杰,王昊,刘丽丽.粉煤灰资源开发利用及产业发展[J].无机盐工业, 2018, 50(5):12-14.
    [15]袁玉婷,张洪刚,潘纲.粉煤灰提取液的絮凝效应[J].环境工程学报, 2016, 10(10):5901-5906.
    [16]徐敏华.粉煤灰成型吸附剂应用实验研究[D].西安:西安科技大学, 2016.
    [17]张朝升,刘宏英,陈秋丽,等.生物活性炭滤池对水源水中邻苯二甲酸酯的降解性能[J].环境工程学报, 2017, 11(4):2247-2254.
    [18] XIE H J, MA Q, TAN W, et al. Adsorption of phthalate esters(PAEs)from aqueous solution onto activated carbons from softstem bulrush[J]. Advanced Materials Research, 2011, 152-153:791-796.
    [19]曾丽璇,李伟杰,庄奕洁,等.粉煤灰深度处理低浓度的磷[J].环境工程学报, 2015, 9(4):1778-1782.
    [20]王剑峰,张金利,杨庆.粉煤灰对Cr(Ⅵ)的吸附特性[J].环境工程学报, 2014, 8(11):4593-4599.
    [21] WEI L, WANG K, ZHAO Q, et al. Kinetics and equilibrium of adsorption of dissolved organic matter fractions from secondary effluent by fly ash[J]. Journal of Environmental Sciences, 2011, 23(7):1057-1065.
    [22] HAYDER A. ALALWAN, MOHAMMAD N, et al. Adsorption of thallium ion(Tl3+)from aqueous solutions by rice husk in a fixedbed column:Experiment and prediction of breakthrough curves[J]. Environmental Technology&Innovation, 2018, 12(11):1-13.
    [23]刘转年,刘源,王贵荣.超细粉煤灰基成型吸附剂的动态吸附实验[J].环境工程学报, 2009, 3(11):2109-2112.
    [24]蔡道飞,黄维秋,王丹莉,等.活性炭吸附有机蒸气性能的研究[J].环境科学, 2013, 34(12):4694-4700.
    [25]侯晨晔.超滤膜-树脂吸附法分离制备茶多酚的工艺研究[D].合肥:合肥工业大学, 2013.
    [26]史莉.地沟式污水生态处理系统除磷效果和机理研究[D].贵阳:贵州师范大学, 2004.
    [27]张进,左聪韵,田浪,等.邻苯二甲酸二甲酯表面印迹微球的合成及吸附性能评价[J].材料导报, 2013, 27(16):151-154.
    [28]李萌,陈爱侠,陈贝,等.粉煤灰对模拟河流中DMP的吸附实验研究[J].应用化工, 2019, 48(2):258-261.
    [29]陈博.渭河干流陕西段水资源保护对策研究[J].陕西水利, 2014, 82(1):51-53.
    [30]李亚娟,赵传起,洪沛东.磁性还原石墨烯的制备及其对抗生素的吸附性能[J].环境工程学报, 2018, 12(1):1-14.
    [31]杨滨银,晁群芳,陈志丹,等.一株菲降解菌的筛选及降解动力学分析[J].环境污染与防治, 2013, 35(4):62-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700