用户名: 密码: 验证码:
齐齐哈尔市主城区城市绿地土壤重金属来源解析与健康风险评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Sources of Soil Heavy Metals and their Health Risk Evaluation in Urban Green Space of Qiqihar City
  • 作者:乔雪 ; 邓琳 ; 王今雨 ; 张道明
  • 英文作者:QIAO Xue;DENG Lin;WANG Jin-yu;ZHANG Dao-ming;Qiqihaer University;
  • 关键词:城市绿地 ; 土壤 ; 重金属 ; 健康风险 ; 齐齐哈尔
  • 英文关键词:Urban green space;;Soil;;Heavy metal;;Health risk;;Qiqihar
  • 中文刊名:土壤通报
  • 英文刊名:Chinese Journal of Soil Science
  • 机构:齐齐哈尔大学;
  • 出版日期:2019-02-06
  • 出版单位:土壤通报
  • 年:2019
  • 期:01
  • 基金:黑龙江省省属高等学校基本科研业务费科研项目(135209253);; 齐齐哈尔市科学技术计划项目(RKX-201609)资助
  • 语种:中文;
  • 页:223-231
  • 页数:9
  • CN:21-1172/S
  • ISSN:0564-3945
  • 分类号:X53;X820.4
摘要
为了解齐齐哈尔市建城区城市绿地土壤重金属来源与健康风险,在生产绿地、居住绿地、公园绿地、工业绿地、附属绿地、防护绿地、道路绿地内采集表层0~20 cm土壤样品,测定重金属含量,并用单因子指数法表征污染水平。应用美国环境保护部(US EPA)健康风险评价模型评估人群暴露土壤重金属的健康风险,以期为城市绿地系统规划和开敞空间规划提供有益的指导。结果表明:各绿地土壤中均有重金属元素含量超过黑龙江省土壤背景值,其中Cu、Zn、Pb、Cr、As表现更为突出;Cr在生产绿地、居住绿地、公园绿地、防护绿地及道路绿地土壤中最高,Hg最低,而工业绿地和附属绿地土壤中Zn最高,Hg最低;单向污染评价显示,居住绿地中的As、公园绿地中的As和Cr、防护绿地中Hg的单因子污染指数大于1,已产生污染。Cu、Pb、Cr、Zn含量高值点主要出现在公园绿地,该绿地土壤中Cu、Pb、Cr、Zn的累积可能受到居民生活和交通活动的多重影响;As含量的高值点主要分布在工业绿地土壤中,源于市区内的工业性企业在各个生产环节产生的污染物和煤炭燃烧的排放富集于土壤。Hg含量的高值点出现在防护绿地中,略超出黑龙江省土壤背景值,需要关注。城市绿地土壤中重金属对成人不存在非致癌健康风险;而居住绿地、公园绿地的土壤中As、Cr和生产绿地土壤中的Cr对儿童存有潜在的非致癌健康风险,需要引起注意。城市绿地土壤中,As、Cr呼吸对成人和儿童的致癌风险指数(CR)平均值均大于US EPA推荐的土壤治理标准(10~(-6)),但未超过有关专家所建议的土壤治理标准(10~(-6)~10~(-4)),其致癌风险已达到了较高的水平,应引起重视;不同绿地类型内人群暴露土壤重金属的非致癌风险和致癌风险存在一定的差异,进行城市绿地系统规划时要科学制定绿地空间布局,降低对人类健康的风险。
        In order to understand the source and health risks of soil heavy metals in the urban green space of Qiqihar City, we collected soil samples from 0-20 cm depth of the production green space, residential green space, park green space, industrial green space, auxiliary green space, protective green space and road green space and determined their heavy metal contents. The single factor index method was used to characterize the level of pollution. The United States Environmental Protection Agency(US EPA) health risk assessment model was used to assess the health risks of heavy metals exposed to the soil, in order to provide useful guidance for urban green space system planning and open space planning. The results showed that the contents of heavy metals, especially Cu, Zn, Pb, Cr and As, in all green space soils exceeded the background value of Heilongjiang Province. The Cr content was the highest and the Hg content was the lowest in producing green space, residential green space, park green space, protective green space and road green space, while Zn was the highest and Hg was the lowest in the industrial green land and affiliated green land. The one-way pollution evaluation showed that As in the residential green space, As and Cr in the park green space, and Hg in the protective green space were at polluted level and their single factor pollution indices were greater than 1. The high values of Cu, Pb, Cr and Zn mainly appeared in the park green space. The accumulation of soil Cu,Pb, Cr and Zn in the green space may be affected by the multiple activities of residents’ living and transportation. The high content of soil As was mainly distributed in the industrial green space, and was from the emissions of pollutants and coal combustion generated by industrial enterprises in the urban area and concentrated in the soil. The high content of Hg appeared in the protective green space, slightly exceeding the soil background value of Heilongjiang Province, and needed to attention. Heavy metals in urban green space had no non-carcinogenic health risks for adults,while soil As and Cr in residential greenbelts and park greenbelts and Cr in production greenbelts had potential non-carcinogenic health risks for children and need to attention. In urban greenfield soils, the average CR of As and Cr breaths for adults and children was greater than soil management standard(10~(-6)) recommended by US EPA, but did not exceed the soil remediation standards(10~(-6) to 10~(-4)) recommended by relevant experts. The risk of carcinogenesis reached a relatively high level and should be paid attention. There was a certain difference in the non-carcinogenic risk and the carcinogenic risk of heavy metal exposure among different types of green spaces. The spatial layout of green space should be scientifically established in planning urban green space systems in order to reduce the human health risk.
引文
[1]王宗爽,武婷,段小丽,等.环境健康风险评价中我国居民呼吸速率暴露参数研究[J].环境科学研究,2009,10(22):1171-1175.
    [2]杨彦,陆晓松,李定龙.我国环境健康风险评价研究进展[J].环境与健康杂志,2014,31(4):357-362.
    [3]颜钰,李盼盼,陶军,等.北京高校校园道路灰尘重金属污染特征及健康风险评价[J].环境污染与防治,2016,38(1):58-63,81.
    [4]谷阳光,高富代.我国省会城市土壤重金属含量分布与健康风险评价[J].环境化学,2017,36(1):62-71.
    [5]林晓峰,胡恭任,于瑞莲,等.泉州市主要工业区土壤重金属健康风险评价[J].有色金属,2011,63(2):297-301.
    [6]郭广慧,宋波.城市土壤重金属含量及其对儿童健康风险的初步评价-以四川省宜宾市为例[J].长江流域资源与环境,2010,19(8):946-852.
    [7]杨忠平,赵剑剑,曹明哲.长春市城区土壤重金属健康风险评价[J].土壤通报,2015,46(2):502-508.
    [8]汤洁,陈初雨,李海毅.大庆市建成区土壤重金属潜在生态危害和健康风险评价[J].地理科学,2011,31(1):117-122.
    [9]陈秀端,卢新卫.西安城市居民区土壤重金属健康风险评价[J].土壤通报,2017,48(4):961-968.
    [10]丁爱芳,刘存丽,陈昌云,等.南京市中心城区道路绿地土壤中重金属含量及污染评价[J].城市环境与城市生态,2011,24(4):17-19.
    [11]贾丽敏,陈秀玲,吕敏.漳州市不同绿地功能区土壤重金属污染特征及评价[J].城市环境与城市生态,2013,26(3):17-19.7-11.
    [12]徐福银,胡艳燕.重庆市不同功能区城市绿地土壤重金属分布特征与评价[J].土壤通报,2014,45(1):227-231.
    [13]阿依加马力·克然木,玉米提·哈力克.阿克苏市绿地土壤重金属含量特征及污染评价[J].森林与环境学报,2018,38(1):91-97.
    [14]于宁,邓琳,乔雪.齐齐哈尔市大学校园绿地土壤质量分析与评价[J].黑龙江畜牧兽医,2017,(7上):153-155,297.
    [15]邓琳,杜楠楠,乔雪,等.齐齐哈尔市主城区住宅小区绿地土壤理化性质研究[J].黑龙江畜牧兽医,2017,(3上):137-141.
    [16]邓琳,杜楠楠,于宁.齐齐哈尔市公园绿地土壤理化性质分析研究[J].黑龙江畜牧兽医,2017,(1上):151-154.
    [17]于宁,邓琳.齐齐哈尔市主城区绿地土壤质量评价[J].黑龙江畜牧兽医,2015,(08上):148-154,298.
    [18]乔雪,邓琳.齐齐哈尔市主城区交通岛和道路绿带土壤重金属污染评价[J].黑龙江畜牧兽医,2017,(9上):171-175.
    [19]陈署晃,冯耀祖,许咏梅.土壤养分变异及合理取样数的初步研究[J].新疆农业科学,2003,40(6):328-331.
    [20]CHEN M,MA L Q,HOOGEWEG C G.Arsenic background concentrations in Florida,USA surface soils:Determination and interpretation[J].Environmental Forensics,2001,2:117-126.
    [21]中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990:351-460.
    [22]赵淑苹,陈立新.大庆地区不同土地利用类型土壤重金属分析及生态危害评价[J].水土保持学报,2011,25(5):195-199.
    [23]朱磊,贾永刚,潘玉英.青岛北站规划区原场地表层土壤重金属污染研究[J].环境科学,2013,34(9):3 663-3 668.
    [24]陈星,马建华,李新宁,等.基于棕地的居民小区土壤重金属健康风险评价[J].环境科学,2011,35(3):1068-1074.
    [25]US EPA.Supplemental guidance for developing soil screening levels for superfund sites[R].Washington DC:US EPA,2002.
    [26]Fryer M,Collinsb C D,Ferrierc H,et a1.Human exposure modeling for chemical risk assessment:a review of current approaches and research and policy implications[J].Environ Sci Policy,2006,9:261-274.
    [27]田裘学.健康风险评价的基本内容与方法[J].甘肃环境研究与监测,1997,10(4):32-36.
    [28]中华人民共和国环保部.污染场地风险评估技术导则(HJ25.3-2014)[S].北京:中国环境科学出版社.2014.
    [29]吴新民,李恋卿,潘根兴,等.南京市不同功能城区土壤中重金属Cu、Zn、Pb和Cd的污染特征[J].环境科学,2003,24(3):105-111.
    [30]雷国建,陈志良,刘千钧,等.广州郊区土壤重金属污染程度及潜在生态危害评价[J].中国环境科学,2013,(S1):49-53.
    [31]郭平,谢忠雷,李军,等.长春市土壤重金属污染特征及其潜在生态风险评价[J].地理科学,2005,25(1):108-112.
    [32]李静,俞天明,周洁,等.铅锌矿区及周边土壤铅、锌、镉、铜的污染健康风险评价[J].环境科学,2008,29(8):2327-2330.
    [33]Bertine K K,Goldberg E D.Fossil fuel combustion and the major sedimentary cycle[J].Science,1971,173(3393):233-235.
    [34]Smith E,Naidu R,Alston A M.Arsenic in the Soil Environment:AReview[J].Advances in Agronomy,1998,64:149-195.
    [35]王明仕,郑宝山,胡军,等.我国煤中砷含量及分布[J].煤炭学报,2005,30(3):344-348.
    [36]田春晖,杨若杼,古丽扎尔?依力哈木,等.南京市大气降尘重金属污染水平及风险评价[J].环境科学,2018,39(7):3118-3125.
    [37]王明仕,刘艳萍,曹景丽,等.焦作市采暖期大气降尘重金属的分布特征和健康风险评估[J].地球与环境,2018,46(1):59-65.
    [38]常静,刘敏,李先华,等.上海地表灰尘重金属污染的健康风险评价[J].中国环境科学,2009,29(5):548-554.
    [39]阎波杰,潘瑜春,赵春江.区域土壤重金属空间变异及合理采样数确定[J].农业工程学报,2008,24(s2):59-65.
    [40]谢志宜,罗小玲,郭庆荣.耕地土壤环境质量监测网最优网格尺度识别研究——以珠三角耕地土壤镉为例[J].生态环境学报,2015,24(9):1519-1525.
    [41]国家环境保护总局.《土壤环境监测技术规范》(HJ/T 166─2004)[s].中国环境出版社,2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700