MICP矿化产物中钙离子利用率的影响因素及微观物相分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influencing factors of calcium ion utilization in MICP mineralized products and analysis of microscopic image
  • 作者:段宇 ; 徐国宾 ; 杨德锋 ; 闫玥
  • 英文作者:DUAN Yu;XU Guobin;YANG Defeng;YAN Yue;State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University;Shool of Water Conservancy and Hydroelectric Power, Hebei University of Engineering;
  • 关键词:微生物诱导碳酸钙矿化沉淀技术 ; 钙离子利用率 ; 时变规律 ; 微观结构 ; 物相分析
  • 英文关键词:microbial induced carbonate precipitation(MICP);;utilization rate of calcium ion;;timedependent deformation;;microstructure;;phase analysis
  • 中文刊名:化工进展
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:天津大学水利工程仿真与安全国家重点实验室;河北工程大学水利水电学院;
  • 出版日期:2019-05-05
  • 出版单位:化工进展
  • 年:2019
  • 期:05
  • 基金:国家自然科学基金(51709198);; 天津市自然科学基金(16JCQNJC07900)
  • 语种:中文;
  • 页:247-254
  • 页数:8
  • CN:11-1954/TQ
  • ISSN:1000-6613
  • 分类号:Q939.9;TQ132.32
摘要
钙离子利用率是微生物诱导碳酸钙沉积矿化技术中一项重要指标和参数,待矿化钙离子能否参与到矿化反应和如何被利用是这项技术的关键。本文借助紫外线吸光度法、电导率法和EDTA滴定法等技术手段,分析了待胶结菌液浓度和脲酶活性的时变规律,阐述了不同胶结配比对矿化反应过程中钙离子利用率的影响。结果表明:在胶结过程中,细菌的浓度和脲酶活性会逐渐降低;在合理浓度范围内,钙离子利用率随菌液浓度以及胶结液浓度的增大而提高,最高可达99.73%。进而通过X射线衍射、扫描电镜检测来揭示矿化产物的形成机理,分析得出:球霰状碳酸钙晶体是钙离子在有机质的调控下依托细菌表面的成核位点富集矿化而成,矿化产物中碳酸钙晶体尺寸大小和形态受菌液和胶结液配比浓度的影响。本研究对于微生物诱导矿化反应生成碳酸钙在工程材料领域的应用具有一定的参考价值。
        The utilization of calcium ions is an important index and parameter in microbially induced calcium carbonate deposition. The key to this technology is whether it can participate in the mineralization reaction. In this study, UV absorbance, conductivity measurement and EDTA titration were used to analyze the time-varying law of bacterium concentration and urease activity, and also the effects of different cementing ratios on the utilization of calcium ion in the mineralization process were discussed.The results showed that, the concentration and urease activity of the bacteria gradually decreased during the cementing process. Within a proper concentration range, calcium ion utilization increased with the increase of bacteria concentration and cementation concentration, and the highest value was 99.73%. The formation mechanism of mineralization products was revealed by X-ray diffraction and scanning electron microscopy. The analysis showed that the sphere-like calcium carbonate crystals are formed by the enrichment and mineralization of calcium ions at the nucleation sites on the surface of the bacteria under the control of organic matter. The size and morphology of the calcium carbonate crystals are affected by the concentration ratio of the bacterial liquid and the cement liquid. This research has particular reference value for the application of calcium carbonate in mineralization induced by microorganisms and its application in engineering materials.
引文
[1]WHIFFIN V S.Microbial CaCO3precipitation for the production of biocement[D].Perth:Murdoch University,2004.
    [2]Al QABANY A,SOGA K.Effect of chemical treatment used in MICPon engineering properties of cemented soils[J].Geotechnique,2013,63(4):331-339.
    [3]CHOU C W,SEAGREN E A,AYDILEK A H,et al.Biocalcification of sand through ureolysis[J].Journal of Geotechnical and Geoenvironmental Engineering,2011,137(12):1179-1189.
    [4]LIAN J J,XU H Y,HE X Q,et al.Biogrouting of hydraulic fill fine sands for reclamation projects[J].Marine Georesources&Geotechnology,2018(8):1-11.
    [5]HARKES M P,VAN PAASSEN L A,BOOSTER J L,et al.Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement[J].Ecological Engineering,2010,36(2):112-117.
    [6]DEJONG J T,SOGA K,KAVAZANJIAN E,et al.Biogeochemical processes and geotechnical applications:progress,opportunities and challenges[J].Geotechnique,2013,63(4):287-301.
    [7]DEJONG J T,MORTENSEN B M,MARTINEZ B C,et al.Biomediated soil improvement[J].Ecological Engineering,2010,36(2):197-210.
    [8]HARKES M P,BOOSTER J L,VAN PAASSEN L A,et al.Microbial induced carbonate precipitation as ground improvement methodbacterial fixation and empirical correlation CaCO3vs strength[C]//Proceedings of 1st International Conference BGCE.Delft:[sn].2008:37-44.
    [9]FERRIS F G,STEHMEIER L G,KANTZAS A,et al.Bacteriogenic mineral plugging[J].Journal of Canadian Petroleum Technology,1996,35(8):56-61.
    [10]TOBLER D J,MACLACHLAN E,PHOENIX V R.Microbially mediated plugging of porous media and the impact of differing injection strategies[J].Ecological Engineering,2012,42:270-278.
    [11]WANG J Y,JONKERS H M,BOON N,et al.Bacillus sphaericus LMG22257 is physiologically suitable for self-healing concrete[J].Applied Microbiology and Biotechnology,2017,101(12):5101-5114.
    [12]QIAN C X,WANG R X,CHENG L,et al.Theory of microbial carbonate precipitation and its application in restoration of cementbased materials defects[J].Chinese Journal of Chemistry,2010,28(5):847-857.
    [13]FERNANDES P.Applied microbiology and biotechnology in the conservation of stone cultural heritage materials[J].Applied Microbiology and Biotechnology,2006,73(2):291-296.
    [14]李沛豪,屈文俊.细菌诱导矿化保护历史建筑遗产的机理及效果[J].硅酸盐学报,2009,37(4):497-505.LI P H,QU W J.Mechanism and performance of remediation for historic buildings by bacterially induced mineralization[J].Journal of the Chinese Ceramic Society.,2009,37(4):497-505.
    [15]STOCKS-FISCHER S,GALIANT J K,BANG S S.Microbiological precipitation of CaCO3[J].Soil Biology and Biochemistry,1999,31(11):1563-1571.
    [16]FERRIS F G,BEVERIDGE T J,FYFE W S.Iron-silica crystallite nucleation by bacteria in a geothermal sediment[J].Nature,1986,320(6063):609-611.
    [17]FERRIS F G,FYFE W S,BEVERIDGE T J.Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment[J].Chemical Geology,1987,63(3/4):225-232.
    [18]SILVER S,TOTH K,SCRIBNER H.Facilitated transport of calcium by cells and subcellular membranes of Bacillus subtilis and Escherichia coli[J].Journal of Bacteriology,1975,122(3):880-885.
    [19]Al QABANY A,SOGA K,SANTAMARINA C.Factors affecting efficiency of microbially induced calcite precipitation[J].Journal of Geotechnical and Geoenvironmental Engineering,2011,138(8):992-1001.
    [20]徐宏殷,贺小青,闫玥,等.围海造陆工程中MICP技术固化黑砂硬壳层的基础研究[J].土工基础,2017(5):610-616.XU H Y,HE X Q,YAN Y,et al.Fundamental study of black sand crust cementation using MICP in artificially made land projects[J].Soil Engineering and Foundation,2017(5):610-616.
    [21]WANG J Y,DE BELIE N,VERSTRAETE W.Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete[J].Journal of Industrial Microbiology&Biotechnology,2012,39(4):567-577.
    [22]WHIFFIN V S,VAN PSSSSEN L A,HARKES M P.Microbial carbonate precipitation as a soil improvement technique[J].Geomicrobiology Journal,2007,24(5):417-423.
    [23]赵茜.微生物诱导碳酸钙沉淀(MICP)固化土壤实验研究[D].北京:中国地质大学(北京),2014.ZHAO Q.Experimental study on soil improvement using microbial induced calcite precipitation(MICP)[D].Beijing:China University of Geosciences(Beijing),2014.
    [24]VON WEIMARN P P.The precipitation laws[J].Chemical Reviews,1925,2(2):217-242.
    [25]BARLOW D A,BAIRD J K,SU C H.Theory of the von Weimarn rules governing the average size of crystals precipitated from a supersaturated solution[J].Journal of Crystal Growth,2004,264(1-3):417-423.
    [26]ZHONG W Z,LUO H S,HUA S K,et al.Crystal surface structure and its growth units of anionic coordination polyhedra[J].Journal of Synthetic Crystals,2004,33(4):471-474.
    [27]郑天文,陈雪梅.碳酸钙空心微球的合成及其生成机理[J].化工进展,2017,36(3):989-995.ZHENG T W,CHENG X M.Synthesis and formation mechanism of calcium carbonate hollow microspeeres[J].Chemical Industry and Engineering Progress,2017,36(3):989-995.
    [28]成亮,钱春香,王瑞兴,等.碳酸岩矿化菌诱导碳酸钙晶体形成机理研究[J].化学学报,2007(19):2133-2138.CHENG L,QIAN C X,WANG R X,et al.Study on the mechanism of calcium carbonate formation induced by carbonate-mineralization microbe[J].Acta Chimica Sinica,2007(19):2133-2138.
    [29]BOSAK T,SOUZA-EGIPSY V,CORSETTI F A,et al.Micrometerscale porosity as a biosignature in carbonate crusts[J].Geology,2004,32(9):781-784.