用户名: 密码: 验证码:
光氧环境对紫色硫细菌YL28去除无机三态氮的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of light and oxygen on the removal of inorganic nitrogen by Marichromatium gracile YL28
  • 作者:张晓波 ; 周广静 ; 朱笔通 ; 赵春贵 ; 杨素萍
  • 英文作者:ZHANG Xiao-Bo;ZHOU Guang-Jing;ZHU Bi-Tong;ZHAO Chun-Gui;YANG Su-Ping;Department of Bioengineering and Biotechnology, Huaqiao University;
  • 关键词:紫细菌 ; ; ; 除氮 ; 响应面分析
  • 英文关键词:Purple bacteria;;Light;;Oxygen;;Nitrogen removal;;Response surface analysis
  • 中文刊名:微生物学通报
  • 英文刊名:Microbiology China
  • 机构:华侨大学生物工程与技术系;
  • 出版日期:2019-02-25 16:00
  • 出版单位:微生物学通报
  • 年:2019
  • 期:05
  • 基金:国家海洋公益性行业科研专项(201505026);; 福建省自然科学基金(2018J01049);; 华侨大学研究生科研创新能力培育项目~~
  • 语种:中文;
  • 页:30-40
  • 页数:11
  • CN:11-1996/Q
  • ISSN:0253-2654
  • 分类号:X714;X172
摘要
【背景】光和氧是制约光合细菌生长代谢进而影响其除氮效果的重要因素。不产氧光合细菌紫色硫细菌——海洋着色菌(Marichromatium gracile) YL28能以亚硝氮为唯一氮源进行光合生长,对高浓度无机三态氮具有良好去除能力。【目的】阐明YL28菌株除氮效率与光氧环境的交互联系,获得其生物除氮的最适光氧条件。【方法】以高浓度无机三态氮共存海水水体为研究体系,在有光/无光条件下考查装样量(表征体系溶氧状态)对YL28菌株生物除氮活性的影响,并通过响应面分析法对装样量、光照强度和光周期3个主要因素进行优化。【结果】光照且氧浓度较低时(80%装样量),YL28具有最佳生长和无机三态氮去除能力;装样量在10%-100%时,菌体生物量(OD_(660))在0.938-2.719之间,当氨氮、亚硝氮和硝氮分别为7.16、5.67和4.83mmol/L时,其去除率分别在71.44%-89.09%、99.22%-99.83%和91.60%-97.33%。黑暗条件下,装样量在20%-100%时,氨氮、亚硝氮和硝氮去除率分别在48.07%-64.27%、73.51%-86.42%和42.57%-46.34%,但菌体生物量(OD_(660)为0.615-0.903)明显降低。通过响应面优化,当装样量、光照强度和光周期分别为80.0%(溶氧量约为0.32 mg/L)、2 800 lx和24L:0D时,细胞生长和氨氮去除活性达到最佳状态,分别比优化前提高了21.28%和14.11%。在实际应用中,选取72%-89%装样量(溶氧量约为0.26-0.63mg/L)、2240-3460lx光照强度和21L:3D-24L:0D光周期,细胞活性可达95%以上。【结论】80%装样量有助于促进菌体光照生长和除氮;在黑暗有氧和无氧环境下,YL28菌株也具有较好除氮活性,这为不产氧光合细菌在生物反应器中高效去除无机三态氮的应用提供了有价值的参考数据。
        [Background] Light and oxygen are important limited factors for cell growth and the inorganic nitrogen removal of anoxygenic phototrophic bacteria(APB). Marichromatium gracile YL28, a member of purple sulfur bacteria in APB, can grow with nitrite as the sole nitrogen source and efficiently remove inorganic nitrogen. [Objective] This work aims to explore the relationship between light and/or oxygen and the removal efficiency of inorganic nitrogen by YL28, and acquire the optimal condition of light and oxygen for biological nitrogen removal processes. [Methods] A simulated seawater system with high concentration of co-exist inorganic nitrogen was used to investigate the effect of sample loading quantity(SLQ, it represents dissolved oxygen level) on the inorganic nitrogen removal efficiency by YL28 under the light or dark conditions. The three major factors of SLQ, light intensity and photoperiod were optimized by the response surface analysis. [Results] Under the light condition, the highest removal efficiency of inorganic nitrogen and cell growth were achieved at 80% of SLQ. When SLQ was in the range of 10% to 100%, the range of biomass value(OD_(660)) was from 0.938 to 2.719 and the removal rate of ammonia, nitrite and nitrate reached 71.44%-89.09%, 99.22%-99.83% and 91.60%-97.33% when exposed to 7.16, 5.67, 4.83 mmol/L of ammonia, nitrite, nitrate, respectively. Under the dark condition, when SLQ was in the range of 20% to100%, the removal rate of ammonia, nitrite and nitrate reached 48.07%-64.27%, 73.51%-86.42% and42.57%-46.34%, respectively, however, the biomass(OD_(660), 0.615-0.903) decreased significantly. The response surface analysis showed that the cell growth and ammonia removal efficiency were increased by21.28% and 14.11% under the 80.0% of SLQ(dissolved oxygen(DO) is approximately 0.32 mg/L),2 800 lx of light intensity and 24 L:0 D of photoperiod condition. In practical application, more than 95% of cell activity was achieved under 72% to 89% of SLQ(DO is in the range of 0.26 to 0.63 mg/L), 2 240-3 460 lx of light intensity and 21 L:3 D-24 L:0 D of photoperiod conditions. [Conclusion] The 80% of SLQ is of benefit to YL28's phototrophic growth and the inorganic nitrogen removal efficiency; YL28 remains the good nitrogen removal activity under anaerobically and/or aerobically in the dark. This study provides useful information for the removal of inorganic nitride by APB in bioreactor.
引文
[1]Gogineni V,Hamann MT.Marine natural product peptides with therapeutic potential:Chemistry,biosynthesis,and pharmacology[J].Biochimica et Biophysica Acta(BBA)-General Subjects,2018,1862(1):81-196
    [2]Canfield DE,Glazer AN,Falkowski PG.The evolution and future of Earth’s nitrogen cycle[J].Science,2010,330(6601):192-196
    [3]Duce RA,LaRoche J,Altieri K,et al.Impacts of atmospheric anthropogenic nitrogen on the open ocean[J].Science,2008,320(5878):893-897
    [4]Ni ZF,Wu XG,Li LF,et al.Pollution control and in situ bioremediation for lake aquaculture using an ecological dam[J].Journal of Cleaner Production,2018,172:2256-2265
    [5]Luo S,Wu BL,Xiong XQ,et al.Short-term toxicity of ammonia,nitrite,and nitrate to early life stages of the rare minnow(Gobiocypris rarus)[J].Environmental Toxicology and Chemistry,2016,35(6):1422-1427
    [6]Zhou T,Yu DS,Li J,et al.Substrate inhibition and kinetic characteristics of marine anaerobic ammonium oxidizing bacteria treating saline wastewater[J].Environmental Science,2017,38(12):5162-5168(in Chinese)周同,于德爽,李津,等.海洋厌氧氨氧化菌处理含海水污水的基质抑制及其动力学特性[J].环境科学,2017,38(12):5162-5168
    [7]Thamdrup B.New pathways and processes in the global nitrogen cycle[J].Annual Review of Ecology,Evology,and Systematics,2012,43(1):407-428
    [8]Pan YY,Zhou BH,Ma FS,et al.Secondary effluent of dying wastewater treatment plant with sulfur autotrophic denitrification[J].Chinese Journal of Environmental Engineering,2017,11(7):4073-4078(in Chinese)潘永月,周北海,马方曙,等.印染废水处理厂二级出水的硫自养反硝化脱氮工艺[J].环境工程学报,2017,11(7):4073-4078
    [9]Bi CX,Yu DS,Du SM,et al.Nitrite accumulation characteristics of partial denitrification in different sludge sources using sodium acetate as carbon source[J].Environmental Science,2019,DOI:10.13227/j.hjkx.201806166(in Chinese)毕春雪,于德爽,杜世明,等.乙酸钠作为碳源不同污泥源短程反硝化过程亚硝酸盐积累特性[J].环境科学,2019,DOI:10.13227/j.hjkx.201806166
    [10]Li T,Cao JW,Xie FL,et al.ABR Decarbonization-nitrosation coupled with anammox treat municipal wastewater[J].Environmental Science,2019.DOI:10.13227/j.hjkx.201808126(in Chinese)李田,曹家炜,谢凤莲,等.ABR除碳-亚硝化耦合厌氧氨氧化处理城市污水[J].环境科学,2019.DOI:10.13227/j.hjkx.201808126
    [11]Zhang XB,Zhu BT,Chan ZH,et al.Effect of organic carbons on the removal of inorganic nitrogen coexisting in marine aquaculture by a marine purple sulfur bacterium,Marichramatium gracile YL28[J].Microbiology China,2017,44(5):1017-1027(in Chinese)张晓波,朱笔通,产竹华,等.有机碳对海洋着色菌YL28去除无机三态氮的影响[J].微生物学通报,2017,44(5):1017-1027
    [12]Gardner WS,Mc Carthy MJ.Nitrogen dynamics at the sediment-water interface in shallow,sub-tropical Florida Bay:why denitrification efficiency may decrease with increased eutrophication[J].Biogeochemistry,2009,95(2/3):185-198
    [13]Strauss EA,Richardson WB,Cavanaugh JC,et al.Variability and regulation of denitrification in an Upper Mississippi River backwater[J].Journal of the North American Benthological Society,2006,25(3):596-606
    [14]Zheng XF,Tang JY,Zhang CF,et al.Bacterial composition,abundance and diversity in fish polyculture and mussel-fish integrated cultured ponds in China[J].Aquaculture Research,2017,48(7):3950-3961
    [15]Zheng XF,Tang JY,Ren G,et al.The effect of four microbial products on production performance and water quality in integrated culture of freshwater pearl mussel and fishes[J].Aquaculture Research,2017,48(9):4897-4909
    [16]Yang W,Zheng C,Zheng ZM,et al.Nutrient enrichment during shrimp cultivation alters bacterioplankton assemblies and destroys community stability[J].Ecotoxicology and Environmental Safety,2018,156:366-374
    [17]Jiang P,Zhao CG,Yang SP.Influences of low-molecular-weight organic carbon and nitrogen sources on growth and inorganic nitrogen removal by Marichromatium gracile strain YL28[J].Oceanologia et Limnologia Sinica,2014,45(6):1218-1224(in Chinese)蒋鹏,赵春贵,杨素萍.小分子有机碳、氮源对海洋着色菌(Marichromatium gracile)生长和去除高浓度无机三态氮的影响[J].海洋与湖沼,2014,45(6):1218-1224
    [18]Zhao JY,Fu YN,Zhao CG,et al.Identification and characterization of a purple sulfur bacterium from mangrove with rhodopin as predominant carotenoid[J].Acta Microbiologica Sinica,2011,51(10):1318-1325(in Chinese)赵江艳,傅英楠,赵春贵,等.一株高含玫红品的红树林海洋紫色硫细菌分离鉴定及特性[J].微生物学报,2011,51(10):1318-1325
    [19]Jiang P,Zhao CG,Jia YQ,et al.Inorganic nitrogen removal by a marine purple sulfur bacterium capable of growth on nitrite as sole nitrogen source[J].Microbiology China,2014,41(5):824-831(in Chinese)蒋鹏,赵春贵,贾雅琼,等.以亚硝氮为唯一氮源生长的海洋紫色硫细菌去除无机三态氮[J].微生物学通报,2014,41(5):824-831
    [20]Jiang P,Zhao CG,Jia YQ,et al.Effects of nitrite on ammonia-nitrogen removal and nitrite-nitrogen as well as photopigment biosynthesis of Marichromatium gracile YL28[J].Microbiology China,2015,42(7):1216-1223(in Chinese)蒋鹏,赵春贵,贾雅琼,等.亚硝氮对海洋着色菌亚硝氮和氨氮去除以及光合色素合成的影响[J].微生物学通报,2015,42(7):1216-1223
    [21]Jiang P,Hong X,Zhao CG,et al.Reciprocal transformation of inorganic nitrogen by resting cells of Marichromatium gracile YL28[J].Journal of Huaqiao University(Natural Science),2015,36(2):185-189(in Chinese)蒋鹏,洪璇,赵春贵,等.海洋着色菌Marichromatium gracile YL28静息细胞对无机三态氮的相互转化作用[J].华侨大学学报:自然科学版,2015,36(2):185-189
    [22]Zhang XB,Zhao CG,Hong X,et al.Genome sequence of Marichromatium gracile YL-28,a purple sulfur bacterium with bioremediation potential[J].Genome Announcements,2016,4(3):e00288-16
    [23]Zhu BT,Zhang XB,Zhao CG,et al.Comparative genome analysis of marine purple sulfur bacterium Marichromatium gracile YL28 reveals the diverse nitrogen cycle mechanisms and habitat-specific traits[J].Scientific Reports,2018,8:17803.
    [24]Zhuo MQ,Zhao CG,Cheng QR,et al.Fingerprinting analysis of photopigments in purple bacteria[J].Acta Microbiologica Sinica,2012,52(6):760-768(in Chinese)卓民权,赵春贵,程茜茹,等.紫细菌光合色素指纹图谱的建立与色素分析[J].微生物学报,2012,52(6):760-768
    [25]Hong X,Chen ZW,Zhao GC,et al.Nitrogen transformation under different dissolved oxygen levels by the anoxygenic phototrophic bacterium Marichromatium gracile[J].World Journal of Microbiology and Biotechnology,2017,33:113
    [26]Chen YH,Yang ZH,Yu GH,et al.Influence of illumination,oxygen,pH and salinity on growth and nitrite removal effect of Rhodopseudomonas palustris strain 2-8[J].South China Fisheries Science,2010,6(4):1-5(in Chinese)陈燕红,杨紫红,喻国辉,等.光照、氧气、pH和盐度对沼泽红假单胞菌2-8菌株生长和亚硝酸盐消除的影响[J].南方水产,2010,6(4):1-5
    [27]Xi YF,Zhang MJ,Huang XS,et al.Isolation and identification of a photosynthetic bacteria strain and its ability of denitrification[J].Journal of Anhui Agricultural Sciences,2010,38(27):14847-14849,14875(in Chinese)席寅峰,张孟婧,黄小帅,等.1株光合细菌的分离鉴定及其脱氮能力研究[J].安徽农业科学,2010,38(27):14847-14849,14875
    [28]Yue HY,Huang X,Zhao CG,et al.Regulation mechanism of photopigments biosynthesis via light and oxygen in Rhodobacter azotoformans 134K20[J].Acta Microbiologica Sinica,2009,49(3):331-336(in Chinese)岳慧英,黄潇,赵春贵,等.不产氧光合细菌光合色素的光氧调控机制[J].微生物学报,2009,49(3):331-336
    [29]Lin ES,Tao X,Hu KH,et al.First exploration on the denitrification capability of a strain of enterobacterium and its simultaneous nitrification and denitrification mechanisms[J].Industrial Water Treatment,2018,38(11):21-26(in Chinese)林而舒,陶欣,胡开辉,等.1株肠杆菌脱氮性能及其同步硝化反硝化机制初探[J].工业水处理,2018,38(11):21-26
    [30]Liu DY,Fan LM,Wang Q,et al.The aerobic denitrification characteristics of paracoccus denitrificans and its nitrogen control for aquaculture water[J].Journal of Agro-Environment Science,2012,31(11):2249-2255(in Chinese)刘道玉,范立民,王琼,等.脱氮副球菌的好氧反硝化特性及对养殖水体中氮素的控制[J].农业环境科学学报,2012,31(11):2249-2255
    [31]Robertson LA,van Niel EWJ,Torremans RAM,et al.Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha[J].Applied and Environmental Microbiology,1988,54(11):2812-2818
    [32]Jin R,Liu T,Liu G,et al.Simultaneous heterotrophic nitrification and aerobic denitrification by the marine origin bacterium Pseudomonas sp.ADN-42[J].Applied Biochemistry and Biotechnology,2014,175(4):2000-2011
    [33]Yao S,Ni JR,Ma T,et al.Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium,Acinetobacter sp.HA2[J].Bioresource Technology,2013,139:80-86
    [34]Huang XF,Li WG,Zhang DY,et al.Ammonium removal by a novel oligotrophic Acinetobacter sp.Y16 capable of heterotrophic nitrification-aerobic denitrification at low temperature[J].Bioresource Technology,2013,146(10):44-50
    [35]Zhao B,He YL,Zhang XF.Nitrogen removal capability through simultaneous heterotrophic nitrification and aerobic denitrification by Bacillus sp.LY[J].Environmental Technology,2010,31(4):409-416
    [36]Li GZ,Lai QL,Shao ZZ,et al.Research progress of heterotrophic nitrification-aerobic denitrification bacteria[J].Biotic Resources,2018,40(5):419-429(in Chinese)李贵珍,赖其良,邵宗泽,等.异养硝化-好氧反硝化细菌的研究进展[J].生物资源,2018,40(5):419-429

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700