滨海沙地不同人工林凋落物现存量及其持水特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Water-holding Capacity and Accumulation Amount of Litters in Different Plantations in Coastal Sandy Area
  • 作者:孟庆权 ; 葛露露 ; 杨馨邈 ; 王俊 ; 林宇 ; 何宗明
  • 英文作者:MENG Qingquan;GE Lulu;YANG Xinmiao;WANG Jun;LIN Yu;HE Zongming;Forestry College, Fujian Agriculture and Forestry University;Engineering Research Center of Chinese Fir,State Forestry Administration;Fujian Changle Dahe State-owned Protection Forest Farm;
  • 关键词:滨海沙地 ; 人工林 ; 凋落物 ; 持水特性
  • 英文关键词:coastal sandy area;;plantation;;litter;;water-holding capacity
  • 中文刊名:水土保持学报
  • 英文刊名:Journal of Soil and Water Conservation
  • 机构:福建农林大学林学院;国家林业局杉木工程技术研究中心;福建省长乐大鹤国有防护林场;
  • 出版日期:2019-06-14
  • 出版单位:水土保持学报
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金项目(31570604,41371269);; 福建省林业科技项目(闽林科[2014]2号);; 福建农林大学林学院林学高峰学科项目
  • 语种:中文;
  • 页:148-154
  • 页数:7
  • CN:61-1362/TV
  • ISSN:1009-2242
  • 分类号:S714
摘要
为了研究滨海沙地沿海防护林凋落物水源涵养功能,采用野外调查和室内浸泡相结合,对滨海沙地4种典型人工林(木麻黄林、湿地松林、尾巨桉林和纹荚相思林)不同分解阶段的凋落物现存量、持水率、持水量和吸水速率进行研究。结果表明:相同林龄的4种人工林凋落物现存量表现为木麻黄林(19.12 t/hm~2)>湿地松林(17.51 t/hm~2)>尾巨桉林(10.90 t/hm~2)>纹荚相思林(10.13 t/hm~2),半分解层凋落物储量占比高于未分解层;4种人工林最大持水率在140.55%~206.47%,为尾巨桉林>纹荚相思林>木麻黄林>湿地松林,最大持水量在20.75~30.85 t/hm~2,为木麻黄林>湿地松林>尾巨桉林>纹荚相思林,4种人工林凋落物最大持水率和最大持水量均为半分解层大于未分解层,不同分解阶段凋落物持水率和持水量与浸水时间呈对数关系;4种人工林不同分解阶段凋落物平均吸水速率在前0.25 h内差异较大,未分解层中尾巨桉林最大为2.05 mm/h,半分解层中湿地松林最大为4.32 mm/h,不同分解阶段凋落物吸水速率与浸水时间均存在幂函数关系;凋落物有效拦蓄深为木麻黄林(2.45 mm)>湿地松林(2.04 mm)>尾巨桉林(1.87 mm)>纹荚相思林(1.72 mm)。综合来看,木麻黄林凋落物的持水能力最强,湿地松林次之,之后是尾巨桉林和纹荚相思林,说明从凋落物水源涵养能力来看,木麻黄林和湿地松林更利于滨海沙地的水源涵养。
        In order to study the water conservation capacity of the litter in coastal shelterbelt forest on coastal sandy land, the litter accumulation amount, water-holding rate, water-holding capacity and water-absorption rate of different decomposition stages were investigated in four typical plantations with same age(Casuarina equisetifolia forest, Pinus elliottii forest, Eucalyptus urophylla × Eucalyptus grandis forest and Acacia culacocarpa forest) of coastal sandy area by the methods of field survey and laboratory soaking extraction. The results showed that the litter accumulation amount of the four plantations decreased in the order of C. equisetifolia forest(19.12 t/hm~2) > P. elliottii forest(17.51 t/hm~2) > E. urophylla × E. grandis forest(10.90 t/hm~2) > A. culacocarpa forest(10.13 t/hm~2), and the percentage of litter accumulation amount in semi-decomposed layer was higher than that in un-decomposed litter. The maximum water-holding rate of the four plantations was 140.55% ~ 206.47%, which followed the order of E. urophylla × E. grandis forest > A. culacocarpa forest > C. equisetifolia forest > P. elliottii forest. The maximum water-holding capacity was 20.75 ~ 30.85 t/hm~2, which was sorted as C. equisetifolia forest > P. elliottii forest > E. urophylla × E. grandis forest > A. culacocarpa forest. The maximum water-holding rate and maximum water-holding capacity of litter in the four plantations were both greater in semi-decomposed litter layer than those in un-decomposed litter layer, and the water-holding rate and water-holding capacity of litter also changed logarithmically with immersing time at different decomposition stages. The average water-absorption rate at different decomposition stages varied greatly in the first 0.25 hours among the four plantations, in the un-decomposed layer, the water-absorption rate of E. urophylla × E. grandis forest was the maximum(2.05 mm/h), and in the semi-decomposed litter layer, the maximum value(4.32 mm/h) was found in P. elliottii forest. The litter water-absorption rate presented a power function with immersing time at the different decomposition stages. The effective interception depth of litter was in the order of C. equisetifolia forest(2.45 mm) > P. elliottii forest(2.04 mm) > E. urophylla × E. grandis forest(1.87 mm) > A. culacocarpa forest(1.72 mm). On the whole, the litter of C. equisetifolia forest had the strongest water-holding capacity, followed by P. elliottii forest, E. urophylla × E. grandis forest and A. culacocarpa forest, indicating that C. equisetifolia forest and P. elliottii forest were more conducive to water conservation in coastal sandy area.
引文
[1] Austin A T,Ballare C L.Dual role of lignin in plant litter decomposition in terrestrial ecosystems [J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(10):4618-4622.
    [2] 黄宗胜,符裕红,喻理飞.喀斯特森林植被自然恢复中凋落物现存量及其碳库特征演化[J].林业科学研究,2013,26(1):8-14.
    [3] Sayer E J,Heard M S,Grant H K,et al.Soil carbon release enhanced by increased tropical forest litterfall[J].Nature Climate Change,2011,1(6):304-307.
    [4] Chen L,Zhang C,Duan W.Temporal variations in phosphorus fractions and phosphatase activities in rhizosphere and bulk soil during the development of Larix olgensis plantations [J].Journal of Plant Nutrition and Soil Science,2016,179(1):67-77.
    [5] Jiang Y,Yin X,Wang F.The influence of litter mixing on decomposition and soil fauna assemblages in a Pinus koraiensis mixed broad-leaved forest of the Changbai Mountains,China [J].European Journal of Soil Biology,2013,55(1):28-39.
    [6] Domke G M,Perry C H,Walters B F,et al.Estimating litter carbon stocks on forest land in the United States [J].Science of the Total Environment,2016,557/558:469-478.
    [7] 刘效东,乔玉娜,周国逸,等.鼎湖山3种不同演替阶段森林凋落物的持水特性[J].林业科学,2013,49(9):8-15.
    [8] 何琴飞,郑威,彭玉华,等.珠江流域中游主要森林类型凋落物持水特性[J].水土保持研究,2017,24(1):128-134.
    [9] 魏强,凌雷,张广忠,等.甘肃兴隆山主要森林类型凋落物累积量及持水特性[J].应用生态学报,2011,22(10):2589-2598.
    [10] 林宇,胡欢甜,邱岭军,等.滨海沙地3种人工林表层土壤微生物量及其影响因素[J].东北林业大学学报,2017,45(5):85-90.
    [11] 林宝平,何宗明,郜士垒,等.去除根系和凋落物对滨海沙地3种防护林土壤碳氮库的短期影响[J].生态学报,2017,37(12):4061-4071.
    [12] 葛露露,孟庆权,林宇,等.滨海沙地不同树种人工林的碳储量及其分配格局[J].应用与环境生物学报,2018,24(4):723-728.
    [13] 葛露露,孟庆权,林宇,等.滨海沙地不同树种人工林叶片和土壤表层稳定碳氮同位素及水分利用效率研究[J].西北植物学报,2018,38(3):544-552.
    [14] 武启骞,王传宽,赵娟,等.帽儿山2种森林类型凋落物和土壤水文效应[J].水土保持学报,2015,29(3):161-166.
    [15] 陈进,徐明,邹晓,等.贵阳市不同林龄马尾松林凋落物储量及持水特性[J].水土保持研究,2018,25(6):146-151.
    [16] 孟庆权,葛露露,林宇,等.滨海沙地不同林分类型土壤养分含量及其化学计量特征[J].亚热带农业研究,2018,14(4):217-223.
    [17] 邱岭军,何宗明,胡欢甜,等.滨海沙地不同树种碳氮磷化学计量特征[J].应用与环境生物学报,2017,23(3):555-559.
    [18] 桑昌鹏,万晓华,余再鹏,等.凋落物和根系去除对滨海沙地土壤微生物群落组成和功能的影响[J].应用生态学报,2017,28(4):1184-1196.
    [19] 常雅军,曹靖,马建伟,等.秦岭西部山地针叶林凋落物持水特性[J].应用生态学报,2008,19(11):2346-2351.
    [20] 张建利,王加国,李苇洁,等.贵州百里杜鹃自然保护区杜鹃林枯落物储量及持水功能[J].水土保持学报,2018,32(3):167-173.
    [21] 王利,于立忠,张金鑫,等.浑河上游水源地不同林型水源涵养功能分析[J].水土保持学报,2015,29(3):249-255.
    [22] 卢振启,黄秋娴,杨新兵.河北雾灵山不同海拔油松人工林枯落物及土壤水文效应研究[J].水土保持学报,2014,28(1):112-116.
    [23] 梁晓娇,王树力.阿什河源头不同类型红松人工林枯落物及其土壤水文特性[J].水土保持学报,2017,31(1):140-145,152.
    [24] 喻阳华,李光容,皮发剑,等.赤水河上游主要森林类型水源涵养功能评价[J].水土保持学报,2015,29(2):150-156.
    [25] 袁秀锦,王晓荣,潘磊,等.三峡库区不同类型马尾松林枯落物层持水特性比较[J].水土保持学报,2018,32(3):160-166.
    [26] 周祥,赵一鹤,张洪江,等.云南高原典型林分林下枯落物持水特征研究[J].生态环境学报,2011,20(2):248-252.