荒漠草地中氮添加与多环芳烃降解的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Relationship between degradation of polycyclic aromatic hydrocarbons (PAHs) and nitrogen fertilization in the desert grassland of Karamay, Xinjiang, China
  • 作者:杨晓东 ; Lu-Chun ; Duan ; 陈悦 ; 孟凡波 ; 李岩 ; 何学敏 ; 张雪妮 ; 吕光辉
  • 英文作者:YANG Xiaodong;DUAN Luchun;CHEN Yue;MENG Fanbo;LI Yan;HE Xueming;ZHANG Xueni;Lü Guanghui;Key Laboratory of Oasis Ecology;Institute of Resources and Environment Science,Xinjiang University;Global Centre for Environmental Remediation ( GCER) ,the University of Newcastle ( UON);Institute of Arid Ecology and Environment,Xinjiang University;
  • 关键词:氮沉降 ; 多环芳烃 ; 荒漠草地 ; 石油污染物 ; 广义线性混合效应模型 ; 干旱区
  • 英文关键词:N deposition;;PAHs;;desert grassland;;petroleum pollutant;;GLMMs;;arid desert region
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:新疆大学绿洲生态教育部重点实验室;新疆大学资源与环境科学学院;Global Centre for Environmental Remediation (GCER),the University of Newcastle (UON);新疆大学干旱生态环境研究所;
  • 出版日期:2019-02-27 08:29
  • 出版单位:生态学报
  • 年:2019
  • 期:09
  • 基金:国家自然科学基金项目(41871031,31860111,31500343,31560131,41571034)
  • 语种:中文;
  • 页:138-151
  • 页数:14
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:X53
摘要
多环芳烃作为环境污染物中一类极为重要的物质,探索它的去除方法吸引了全球环境学者及政府的高度重视。大气氮沉降在过去几十年不断增加,已影响到陆地生态系统氮循环过程。但目前,氮沉降与多环芳烃降解之间的关系尚不明确。通过在新疆克拉玛依市石油化工厂附近的荒漠草地上,模拟氮沉降实验,通过在4氮添加梯度(CK=0; N1=10; N2=30; N3=90 kg N hm~(-2) a~(-1))上调查土壤中16种优先控制多环芳烃的含量和总量(∑PAHs),以及它们与生物非生物环境因子(土壤环境因子、土壤酶活性和土壤微生物功能多样性)之间的关系,旨在揭示氮沉降对多环芳烃降解的影响。结果表明:除苊烯(Acenaphthylene)和苊(Acenaphthene)两种多环芳烃在4个N添加梯度上未检测到含量外,∑PAHs和其他14种优先控制多环芳烃在土壤中的含量均随氮添加量增加显著减小(N2≤N3多环芳烃含量的比值>1.00,且0.40<荧蒽(Fluoranthene)/[(荧蒽(Fluoranthene)+芘(Pyrene)]<0.50,石油污染物是当地土壤中多环芳烃的主要来源;9月份克拉玛依市荒漠草地土壤中∑PAHs约(28.91±2.32) mg/kg,属于多环芳烃重污染土壤;广义线性混合效应模型结果显示,在大多数情况下,∑PAHs和14种多环芳烃的含量与土壤有机质、铵态氮、硝态氮、总氮、有效磷和脲酶活性显著相关(P<0.05),但其与生物非生物环境因子之间的回归关系在不同种类多环芳烃之间差异较大。综上可知,土壤中多环芳烃的降解是一个非常复杂的过程,它是自身属性、植物根系和土壤微生物等多重因子相互共同作用的结果。在干旱区荒漠草地中,氮添加能提升土壤中营养物质的可利用性、植物根系和土壤微生物的活性,有利于降解土壤多环芳烃
        As a critical environmental pollutant, the development of contamination control methods for polycyclic aromatic hydrocarbons(PAHs) has generated great concern worldwide. Atmospheric nitrogen(N) deposition has increased over the last few decades, which in turn has made available N increase in terrestrial ecological systems. However, relationship between PAHs degradation and N deposition remains unclear. In this study, four amounts of N fertilization, i.e., low(N1), middle(N2), and high(N3) N additions(10, 30, and 90 kg N hm~(-2) a~(-1), respectively) and an unfertilized control(CK; 0 kg N hm~(-2) a~(-1)), were conducted in the desert grassland of Karamay, Xinjiang, in northwest China. Then, the amounts of 16 priority USEPA PAHs, the total amount of PAHs(∑PAHs), and three biotic-abiotic factors, including soil environmental factors, enzyme activities, and microbial functional diversity, were investigated to demonstrate the effects of N fertilization on PAHs degradation in the desert grassland. The results showed that, the amounts of ∑PAHs and 14 priority USEPA PAHs significantly decreased along the gradient of N addition(N2≤N31.00, whereas 0.40
引文
[1] Zhang J,Wang J,Hua P,Krebs P.The qualitative and quantitative source apportionments of polycyclic aromatic hydrocarbons in size dependent road deposited sediment.Science of the Total Environment,2015,505:90- 101.
    [2] Wang X Y,Xu H Z,Zhou Y D,Wu C W,Kanchanopas-Barnette P.Distribution and source apportionment of polycyclic aromatic hydrocarbons in surface sediments from Zhoushan Archipelago and Xiangshan Harbor,East China Sea.Marine Pollution Bulletin,2015,101(2):895- 902.
    [3] Yuan H M,Li T G,Ding X G,Zhao G M,Ye S Y.Distribution,sources and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in surface soils of the Yellow River Delta,China.Marine Pollution Bulletin,2014,83(1):258- 264.
    [4] Bouloubassi I,Roussiez V,Azzoug M,Lorre A.Sources,dispersal pathways and mass budget of sedimentary polycyclic aromatic hydrocarbons (PAH) in the NW Mediterranean margin,Gulf of Lions.Marine Chemistry,2012,142- 144:18- 28.
    [5] Cerniglia C E.Biodegradation of polycyclic aromatic hydrocarbons.Biodegradation,1992,3(2/3):351- 368.
    [6] 范淑秀,李培军,何娜,任婉侠,张海荣,许华夏.多环芳烃污染土壤的植物修复研究进展.农业环境科学学报,2007,26(6):2007- 2013.
    [7] Maliszewska-Kordybach B.Polycyclic aromatic hydrocarbons in agricultural soils in Poland:preliminary proposals for criteria to evaluate the level of soil contamination.Applied Geochemistry,1996,11(1/2):121- 127.
    [8] 葛蔚,程琪琪,柴超,曾路生,吴娟,陈清华,朱祥伟,马东.山东省农田土壤多环芳烃的污染特征及源解析.环境科学,2017,38(4):1587- 1596.
    [9] Liu X J,Zhang Y,Han W X,Tang A H,Shen J L,Cui Z L,Vitousek P,Erisman J W,Goulding K,Christie P,Fangmeier A,Zhang F S.Enhanced nitrogen deposition over China.Nature,2013,494(7438):459- 462.
    [10] 曹丛丛,齐玉春,董云社,彭琴,刘欣超,孙良杰,贾军强,郭树芳,闫钟清.氮沉降对陆地生态系统关键有机碳组分的影响.草业学报,2014,23(2):323- 332.
    [11] 钟晓兰,李江涛,李小嘉,叶永昌,刘颂颂,徐国良,倪杰.模拟氮沉降增加条件下土壤团聚体对酶活性的影响.生态学报,2015,35(5):1422- 1433.
    [12] Jiang S,Lu H L,Zhang Q,Liu J C,Yan C L.Effect of enhanced reactive nitrogen availability on plant-sediment mediated degradation of polycyclic aromatic hydrocarbons in contaminated mangrove sediment.Marine Pollution Bulletin,2016,103(1/2):151- 158.
    [13] Vauramo S,J??skel?inen V,Set?l? H.Environmental fate of polycyclic aromatic hydrocarbons under different plant traits in urban soil as affected by nitrogen deposition.Applied Soil Ecology,2011,47(3):167- 175.
    [14] Crecchio C,Gelsomino A,Ambrosoli R,Minati J L,Ruggiero P.Functional and molecular responses of soil microbial communities under differing soil management practices.Soil Biology and Biochemistry,2004,36(11):1873- 1883.
    [15] Whitford W,Wade E L.Ecology of Desert Systems.Amsterdam:Elsevier,2002:1122.
    [16] Polis G A.The Ecology of Desert Communities.Tucson:University of Arizona Press,1991.
    [17] 贺星,马文红,梁存柱,红梅,柴曦,赵巴音那木拉,张宇平,杨绍欢,张佳鑫,辛晓平.养分添加对内蒙古不同草地生态系统生物量的影响.北京大学学报:自然科学版,2015,51(4):657- 666.
    [18] Collins S L,Ladwig L M,Petrie M D,Jones S K,Mulhouse J M,Thibault J R,Pockman W T.Press-pulse interactions:effects of warming,N deposition,altered winter precipitation,and fire on desert grassland community structure and dynamics.Global Change Biology,2017,23(3):1095- 1108.
    [19] Wang W,Lai Y S,Ma Y Y,Liu Z L,Wang S F,Hong C L.Heavy metal contamination of urban topsoil in a petrochemical industrial city in Xinjiang,China.Journal of Arid Land,2016,8(6):871- 880.
    [20] 张菊,康荣华,赵斌,黄永梅,叶芝祥,段雷.内蒙古温带草原氮沉降的观测研究.环境科学,2013,34(9):3552- 3556.
    [21] Zhao S L,Zhai A.Screening PAHs in soil using RTL database with sampliQ QuEChERS extraction kits and Agilent 5975T LTM GC/MS.Agilent Technologies publication.2011.
    [22] 中国科学院南京土壤研究所.土壤理化分析.上海:上海科学技术出版社,1978.
    [23] Andreoni V,Cavalca L,Rao M A,Nocerino G,Bernasconi S,Dell′Amico E,Colombo M,Gianfreda L.Bacterial communities and enzyme activities of PAHs polluted soils.Chemosphere,2004,57(5):401- 412.
    [24] Classen A T,Boyle S I,Haskins K E,Overby S T,Hart S C.Community-level physiological profiles of bacteria and fungi:plate type and incubation temperature influences on contrasting soils.FEMS Microbiology Ecology,2003,44(3):319- 328.
    [25] 董立国,蒋齐,蔡进军,张源润,许浩,李生宝.基于Biolog-ECO技术不同退耕年限苜蓿地土壤微生物功能多样性分析.干旱区研究,2011,28(4):630- 637.
    [26] Yunker M B,Macdonald R W,Vingarzan R,Mitchell R H,Goyette D,Sylvestre S.PAHs in the Fraser River basin:a critical appraisal of PAH ratios as indicators of PAH source and composition.Organic Geochemistry,2002,33(4):489- 515.
    [27] R Core Team.R:A Language and Environment for Statistical Computing.Vienna,Austria:R Foundation for Statistical Computing,2014:12- 21.
    [28] Bates D,Maechler M,Bolker B,Walker S.Fitting Linear Mixed-Effects Models Using lme4.Journal of Statistical Software,2015,67:1- 48.
    [29] 张俊叶,俞菲,俞元春.中国主要地区表层土壤多环芳烃含量及来源解析.生态环境学报,2017,26(6):1059- 1067.
    [30] 陈凤,王程程,张丽娟,韦雪花,王倩.铅锌冶炼区农田土壤中多环芳烃污染特征、源解析和风险评价.环境科学学报,2017,37(4):1515- 1523.
    [31] 蓝家程,孙玉川,师阳,徐昕,袁道先,胡宁.岩溶地下河流域表层土壤多环芳烃污染特征及来源分析.环境科学,2014,35(8):2937- 2943.
    [32] 张娟,吴建芝,刘燕.北京市绿地土壤多环芳烃分布及健康风险评价.中国环境科学,2017,37(3):1146- 1153.
    [33] 孙焰,祁士华,李绘,黄焕芳,杨丹,范宇寒,闵洋,瞿程凯.福建闽江沿岸土壤中多环芳烃含量、来源及健康风险评价.中国环境科学,2016,36(6):1821- 1829.
    [34] 朱清禾,曾军,吴宇澄,张桃林,林先贵.南京有机污染风险区农田土壤多环芳烃污染状况研究.土壤通报,2016,47(6):1485- 1489.
    [35] 朱媛媛,田靖,魏恩琪,魏复盛.天津市土壤多环芳烃污染特征、源解析和生态风险评价.环境化学,2014,33(2):248- 255.
    [36] Liu H Y,Meng F B,Tong Y D,Chi J.Effect of plant density on phytoremediation of polycyclic aromatic hydrocarbons contaminated sediments with Vallisneria spiralis.Ecological Engineering,2014,73:380- 385.
    [37] Aggangan R T,O′Connell A M,McGrath J F,Dell B.Fertilizer and previous land use effects on C and N mineralization in soils from Eucalyptus globulus plantations.Soil Biology and Biochemistry,1998,30(13):1791- 1798.
    [38] 焦海华,张淑珍,景旭东,张通,白志辉.油田区多环芳烃污染盐碱土壤活性微生物群落结构解析.生态学报,2016,36(21):6994- 7005.
    [39] 张娟,刘燕.植物修复多环芳烃污染土壤研究进展.环境科学与技术,2016,39(6):110- 116,186- 186.
    [40] James K,Peters R E,Cave M R,Wickstrom M,Lamb E G,Siciliano S D.Predicting polycyclic aromatic hydrocarbon bioavailability to mammals from incidentally ingested soils using partitioning and fugacity.Environmental Science & Technology 2016,50(3):1338- 1346.
    [41] Weng B S,Xie X Y,Yang J J,Liu J C,Lu H L,Yan C L.Research on the nitrogen cycle in rhizosphere of Kandelia obovata under ammonium and nitrate addition.Marine Pollution Bulletin,2013,76(1/2):227- 240.