环境条件和外源硅浓度对黄瓜硅吸收分配的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of environmental conditions and exogenous silicon concentration on absorption and allocation of silicon in cucumber
  • 作者:刘淑侠 ; 李治红 ; 周鑫 ; 赵升 ; 李岩 ; 魏珉
  • 英文作者:LIU Shu-xia;LI Zhi-hong;ZHOU Xin;ZHAO Sheng;LI Yan;WEI Min;College of Horticultural Science and Engineering, Shandong Agricultural University;Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region,Ministry of Agriculture;State Key Laboratory of Crop Biology;Shandong Fruit and Vegetable Quality and Efficient Production Collaborative Innovation Center;
  • 关键词:黄瓜 ; 环境条件 ; 硅浓度 ; 主动吸收 ; 被动吸收
  • 英文关键词:cucumber;;environmental condition;;silicon concentration;;active absorption;;passive absorption
  • 中文刊名:植物营养与肥料学报
  • 英文刊名:Journal of Plant Nutrition and Fertilizers
  • 机构:山东农业大学园艺科学与工程学院;农业部黄淮海设施农业工程科学观测实验站;作物生物学国家重点实验室;山东果蔬优质高效生产协同创新中心;
  • 出版日期:2019-04-25
  • 出版单位:植物营养与肥料学报
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金项目(31272211,31572171);; 国家现代农业产业技术体系建设专项(CARS-23);; 山东农业大学双一流科技创新团队设施园艺优势团队专项(SYL2017YSTD07)资助
  • 语种:中文;
  • 页:134-140
  • 页数:7
  • CN:11-3996/S
  • ISSN:1008-505X
  • 分类号:S642.2
摘要
【目的】研究不同环境条件和根际硅水平对黄瓜硅主动和被动吸收过程的影响。【方法】以‘新泰密刺’黄瓜为试材,在人工气候室内采用水培法,设置4种环境条件:1) T1,昼/夜温度22℃/12℃、相对湿度85%/95%、光照强度300μmol/(m~2·s);2) T2,昼/夜温度22℃/12℃、相对湿度85%/95%,光照强度600μmol/(m~2·s);3) T3,昼/夜温度28℃/18℃,相对湿度55%/65%、光照强度300μmol/(m~2·s);4) T4,昼/夜温度28℃/18℃、相对湿度55%/65%、光照强度600μmol/(m~2·s)。硅吸收动力学试验营养液设置为10个Si处理浓度,依次为0、0.085、0.17、0.34、0.51、0.68、0.85、1.02、1.36、1.70 mmol/L,硅吸收分配试验设置3个硅浓度为0.085、0.17、1.7 mmol/L。【结果】不同环境条件下黄瓜对硅的吸收速率及器官中硅含量均为T4> T3> T2> T1处理;低外源硅浓度(0.085和0.17 mmol/L)下,黄瓜硅吸收在T1、T2、T3处理环境中以主动过程为主,在T4处理环境中以被动过程为主;高外源硅浓度(1.7 mmol/L)下,4种环境条件下的硅吸收均以被动过程为主;相同温度条件,强光下被动吸收的占比大于弱光,相同光照条件,高温下被动吸收的占比大于低温;相同环境条件下,随着外源硅浓度的增加,黄瓜对硅的被动吸收量和总吸收量均呈上升趋势,且被动吸收的占比增加。【结论】环境条件和外源硅水平影响黄瓜对硅的主动和被动吸收过程,高温、强光及高外源硅浓度提高黄瓜被动吸收硅的比例。
        【Objectives】This experiment was conducted to study the effects of environmental conditions and silicon supplying levels on the active and passive absorption process of Si by cucumber.【Methods】Using‘Xintaimici' cucumber as the tested material, soilless culture methods were adopted in an artificial climate chamber. Four environmental conditions were set up: 1) T1, day/night temperature 22℃/12℃, relative humidity85%/95%, light intensity 300 μmol/(m~2·s); 2) T2, day/night temperature 22℃/12℃, ralative humidity 85%/95%,light intensity 600 μmol/(m~2·s); 3) T3, day/night temperature 28℃/18℃, ralative humidity 55%/65%, light intensity 300 μmol/(m~2·s); 4) T4, day/night temperature 28℃/18℃, ralative humidity 55%/65%, light intensity600 μmol/(m~2·s). For the experiment of Si absorption dynamics, 10 levels were set up: 0, 0.085, 0.17, 0.34, 0.51,0.68, 0.85, 1.02, 1.36, 1.70 mmol/L. For the experiment of Si absorption and distribution, three concentrations of0.085, 0.17, 1.7 mmol/L were set up.【Results】Among 4 environmental conditions, the silicon absorption rate and silicon content in organs were all T4>T3>T2>T1. At lower silicon concentration(0.085 and 0.17 mmol/L),the silicon absorption of cucumber was mainly active process in T1, T2 and T3, and passive process in T4; at higher silicon concentrations(1.7 mmol/L), however, passive absorption was dominant under all the four environmental conditions. At same temperature, the proportion of passive absorption under strong light was greater than that under weak light. Under the same light intensity, the proportion of passive absorption at high temperature was higher than that at low temperature. Under same environmental conditions, with the increase of the exogenous silicon concentration, both the passive absorption and total absorption of silicon in cucumber increased, and the proportion of passive absorption increased.【Conclusions】Both environmental conditions and exogenous silicon concentrations affect the active and passive absorption of cucumber to silicon, high temperature, strong light and high silicon concentration increase the proportion of passive absorption.
引文
[1]李红丽.嫁接对黄瓜果实品质影响的研究[D].山东泰安:山东农业大学硕士学位论文,2005.Li H L.Studies on the effect of graft on the quality of cucumber fruits[D].Tai'an,Shandong:MS Thesis of Shandong Agricultural University,2005.
    [2]大薮哲也,施山纪男,今田成雄,等.接ぎ木キュウリの光合成及び14C同化产物の转流に及ぼすブル-ムレス台木の影响[J].园学杂,1989,58:276-277.Oyabu T,Seyama N,Shigeo I,et al.The influence by bloomless rootstock on photosynthesis and 14C assimilate transportation in cucumber[J].Japan.Soc.Hort.Sci,1989,58:276-277.
    [3]张红梅,金海军,余纪柱,等.不同南瓜砧木对嫁接黄瓜生长和果实品质的影响[J].内蒙古农业大学学报(自然科学版),2007,28(3):177-181.Zhang H M,Jin H J,Yu J Z,et al.Effects of different pumpkin rootstocks on growth and fruit quality of grafting cucumber[J].Journal of Inner Mongolia Agricultural University(Natural Science Edition),2007,28(3):177-181.
    [4]Hayashi T,Suzuki T,Oosawa K.Correlation between occurrence of bloom on cucumber fruit and air temperature in a plastic film greenhouse[J].Acta Horticulturae,2002,13(4):280-282.
    [5]Samuels A L,Glass A D M,Ehret D L,et al.The effects of silicon supplementation on cucumber fruit:changes in surface characteristics[J].Annals of Botany,1993,72(5):433-440.
    [6]Seki M,Hotta Y.Effect of bloomless stock cultivar on the growth and mineral uptake of cucumber(Cucumis sativus)plants[J]. Research Bulletin of the Aichi-ken Agricultural Research Center,1997,(29):127-133.
    [7]刘青,魏珉,沈琼,等.不同砧木对嫁接黄瓜蜡粉形成及硅吸收分配的影响[J].园艺学报,2012,39(5):897-904.Liu Q,Wei M,Shen Q,et al.Effects of different rootstocks on bloom formation and absorption and distribution of silicon in grafted cucumber[J].Acta Horticulturae Sinica,2012,39(5):897-904.
    [8]沈琼,崔健,申太荣,等.嫁接黄瓜果实表面蜡粉形成与砧木的相关性及其硅吸收分配特性[J].植物营养与肥料学报,2014,20(1):254-258.Shen Q,Cui J,Shen T R,et al.Correlation between bloom formation on fruit surface of grafted cucumber and rootstocks and absorption and distribution of silicon[J].Journal of Plant Nutrition and Fertilizer,2014,20(1):254-258.
    [9]Epstein E.Silicon[J].Annual Review of Plant Physiology and Plant Molecular Biology,1999,50:641-664.
    [10]Takahashi E,Ma J F,Miyake Y.The possibility of silicon as an essential element for higher plants[J].comments on Agricultural and Food Chemistry,1990,2(2):99-122.
    [11]李晓艳,孙立,吴良欢.不同吸硅型植物各器官硅素及氮、磷、钾素分布特征[J].土壤通报,2014,45(1):193-198.Li X Y,Sun L,Wu L H.The distribution of silicon,nitrogen,phosphorus and potassium in the organs of different silicon-absorbing plants[J].Chinese Journal of Soil Science,2014,45(1):193-198.
    [12]Mitani N,Ma J F.Uptake system of silicon in different plant species[J].Journal of Experimental Botany,2005,56(414):1255.
    [13]Liang Y,Si J,R?mheld V.Silicon uptake and transport is an active process in Cucumis sativus[J].New Phytologist,2005,167(3):797-804.
    [14]Faisal S,Calliskristine L,Slot M,et al.Transpiration-dependent passive silica accumulation in cucumber(Cucumis sativus)under varying soil silicon availability[J].Botany,2012,90(10):1058-1064.
    [15]范培培,朱祝军,于超,等.黄瓜中硅的生理功能及转运机制研究进展[J].植物生理学报,2014,50(2):117-122.Fan P P,Zhu Z J,Yu C,et al.Progress in research of physiological function and transport mechanisms of silicon in cucumber[J].Plant Physiology Journal,2014,50(2):117-122.
    [16]李惠霞,周婷,刘岩,等.不同番茄品种镁吸收特性比较[J].植物营养与肥料学报,2018,24(1):187-194.Li H X,Zhou T,Liu,Y,et al.Comparison of magnesium uptake properties of three tomato cultivars[J].Journal of P1ant Nutrition and Fertilizer,2018,24(1):187-194.
    [17]华海霞,梁永超,娄运生,等.水稻硅吸收动力学参数固定方法的研究[J].植物营养与肥料学报,2006,12(3):358-362.Hua H X,Liang Y C,Lou Y S,et al.Comparison of research methods for silicon uptake kinetics of rice[J].P1ant Nutrition and Fertilizer Science,2006,12(3):358-362.
    [18]Vorm P D J V D.Dry ashing of plant material and dissolution of the ash in HF for the colorimetric determination of silicon[J].Communications in Soil Science&Plant Analysis,1987,18(11):1181-1189.
    [19]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000. Li H S.Principles and techniques of plant physiological biochemical experiment[M].Beijing:Higher Education Press,2000.
    [20]Liang Y C,Nikolic M,Bélanger R,et al.Silicon uptake and transport in plants:physiological and molecular aspects[A].Liang Y C,Nikolic M,Bélanger R,et al.Silicon in agriculture[M].Dordrecht:Springer,2015.
    [21]Rao G B,Susmitha P.Silicon uptake,transportation and accumulation in rice[J].Pharmacognosy Journal,2017,6(6):290-293.
    [22]Guntzer F,Keller C,Meunier J D.Benefits of plant silicon for crops:a review[J].Agronomy for Sustainable Development,2012,32(1):201-213.
    [23]张中典,张大龙,李建明,等.黄瓜气孔导度、水力导度的环境响应及其调控蒸腾效应[J].农业机械学报,2016,47(6):139-147.Zhang Z D,Zhang D L,Li J M,et al.Environmental response of stomatal and hydraulic conductances and their effects on regulating transpiration of cucumber[J].Transactions of the Chinese Society for Agricultural Machinery,2016,47(6):139-147.
    [24]张大龙,宋小明,杜清洁,等.温室环境因子驱动甜瓜水分传输机理分析与模拟[J].农业机械学报,2017,48(2):232-239.Zhang D L,Song X M,Du Q J,et al.Mechanism analysis and simulation of water transport driven by environmental factors for greenhouse muskmelon[J].Transactions of the Chinese Society of Agricultural Machinery,2017,48(2):232-239.
    [25]沈琼.黄瓜果实表面蜡粉形成及其与硅吸收分配的关系研究[D].山东泰安:山东农业大学硕士学位论文,2013.Shen Q.Studies on bloom formation on fruit surface of cucumber and the relationship with absorption and distribution of silicon[D].Tai′an,Shandong:MS Thesis of Shandong Agricultural University,2011.
    [26]孟庆伟,高辉远.植物生理学[M].北京:中国农业出版社,2011.Meng Q W,Gao H Y.Plant physiology[M].Beijing:China Agriculture Press,2011.
    [27]王东旭.硅转运相关基因CSiT-1和CSiT-2克隆表达与转化黄瓜研究[D].浙江临安:浙江农林大学硕士学位论文,2013.Wang D X.Cloning,expression and transformation of silicon transport gene CSiT-1 and CSiT-2 in cucumber[D].Lin'an,Zhejiang:MS Thesis of Zhejiang A&F University,2013.