多环芳烃(菲)添加对珠江河口农村和城市河流湿地土壤氮矿化过程的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of polycyclic aromatic hydrocarbon(phenanthrene)addition on soil nitrogen mineralization processes in rural and urban river wetlands of the Pearl River Estuary,China
  • 作者:尹硕 ; 白军红 ; 温晓君 ; 张光亮 ; 韩玲 ; 胡星云
  • 英文作者:YIN Shuo;BAI Jun-hong;WEN Xiao-jun;ZHANG Guang-liang;HAN Ling;HU Xing-yun;State Key Laboratory of Water Environment Simulation,School of Environment,Beijing Normal University;
  • 关键词:河口湿地 ; 多环芳烃 ; 氮矿化 ; 脲酶活性 ; 氨氧化微生物
  • 英文关键词:estuarine wetlands;;phenanthrene;;nitrogen mineralization;;urease activity;;ammonia oxidizing microorganism
  • 中文刊名:农业环境科学学报
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:水环境模拟国家重点实验室北京师范大学环境学院;
  • 出版日期:2019-03-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:03
  • 基金:北京师范大学学科交叉建设项目~~
  • 语种:中文;
  • 页:122-130
  • 页数:9
  • CN:12-1347/S
  • ISSN:1672-2043
  • 分类号:X53
摘要
为研究多环芳烃(菲)添加对珠江口河流湿地土壤氮矿化的影响,选取珠江三角洲番禺区的农村河流和城市河流湿地,采用鲜土对两种湿地土壤添加3种浓度的菲(0、15、100 mg·kg-1)进行为期42 d的室内培养实验,分析了两类湿地土壤氮矿化速率以及影响氮矿化过程的脲酶活性及氨氧化古菌(AOA)与氨氧化细菌(AOB)的比例变化。结果表明:土壤氮矿化速率变化范围为-4.885~5.877 mg·kg-1·d-1,氨化速率变化范围为-3.823~4.677 mg·kg-1·d-1,硝化速率变化范围为-4.990~5.369 mg·kg-1·d-1。所有处理中脲酶活性均呈下降趋势,下降比例在26.1%~83.4%的范围内。多环芳烃添加处理组下降比例显著小于无添加对照组(P<0.05),而农村河流湿地中的高浓度处理组除外(P>0.05)。农村河流湿地中,无添加和高浓度处理下培养后的AOB在氨氧化过程中的占比比培养前减少25.85%和7.31%,低浓度添加则增加36.37%。而菲添加对城市河流湿地AOA和AOB两者比例变化的影响较小。研究表明,除高浓度多环芳烃添加利于城市河流湿地土壤氮矿化外,其他添加实验均显示多环芳烃不利于土壤氮矿化。与对照组相比,多环芳烃的添加对土壤脲酶活性有促进作用(农村河流湿地高浓度处理除外)。在农村河流湿地土壤中,AOB对多环芳烃适应性比AOA更强,低浓度适应性最高,而多环芳烃对城市河流湿地土壤氨氧化微生物群落结构基本无影响。
        Soil samples were collected from rural and urban river wetlands in the Panyu district of the Pearl River Estuary to investigate the effect of polycyclic aromatic hydrocarbon(phenanthrene)addition on soil nitrogen mineralization processes in both types of wetlands. To analyze the changes in nitrogen mineralization rates, urease activities and the ratios of ammonia-oxidizing archaea(AOA)to ammonia-oxidizing bacteria(AOB)in the process of nitrogen mineralization in both wetland soils were analyzed under three phenanthrene-addition treatments(0, 15 mg·kg-1, and 100 mg·kg-1)throughout a 42-day laboratory incubation experiment. Soil nitrogen mineralization rates under all treatments ranged from-4.885 mg·kg-1·d-1 to 5.877 mg·kg-1·d-1.The rate of ammonization varied from-3.823 mg·kg-1·d-1 to 4.677 mg·kg-1·d-1, and the rate of nitrification ranged from-4.990 mg·kg-1·d-1 to 5.369 mg·kg-1·d-1. Urease activities declined with increasing incubation time under all three treatments, with the decreasing percentages ranging between 26.1% and 83.4%. The decrease in percentages under phenanthrene addition was significantly lower than those under control conditions(P<0.05), except for rural river wetland soils under high levels of phenanthrene addition(P>0.05). In rural river wetland soils, the proportion of AOB of ammoxidation microbials under no phenanthrene addition and high levels of phenanthrene addition decreased by 25.85% and 7.31%, respectively, while the proportion increased by 36.37% under low levels of phenanthrene addition. Comparatively less effect was observed in the urban river wetland soils.Phenanthrene is not conducive to nitrogen mineralization except for the improvements observed with high levels of phenanthrene addition to urban river wetland soils. Compared with the control treatment, phenanthrene was beneficial in enhancing urease activities, while no significant effect in rural river wetland soils under high levels of phenanthrene addition was observed. In rural river wetland soils, AOB exhibited higher adaption to phenanthrene, showing the highest adaptability to low concentrations of phenanthrene, while phenanthrene had little effect on the microbial community structure of ammonia oxidation microorganisms in urban river wetlands.
引文
[1] Chapin F S, Vitousek P M, Cleve K V. The nature of nutrient limitation in plant communities[J]. The American Naturalist, 1986, 127(1):48-58.
    [2] Mitsch W J, Gosselink J G. Wetlands[M]. 3rd Edition. New York:Wiley, 2000.
    [3]白军红,欧阳华,邓伟,等.湿地氮素传输过程研究进展[J].生态学报, 2005, 25(2):326-333.BAI Jun-hong, OUYANG Hua, DENG Wei, et al. A review on nitrogen transmission processes in natural wetlands[J]. Acta Ecologica Sinica,2005, 25(2):326-333.
    [4]牟晓杰,孙志高,刘兴土.黄河口典型潮滩湿地土壤净氮矿化与硝化作用[J].中国环境科学, 2015, 35(5):1466-1473.MOU Xiao-jie, SUN Zhi-gao, LIU Xing-tu. Net nitrogen mineralization and nitrification in the tidal marsh soils of the Yellow River Estuary[J]. China Environmental Science, 2015, 35(5):1466-1473.
    [5] Haritash A K, Kaushik C P. Biodegradation aspects of polycyclic aromatic hydrocarbons(PAHs):A review[J]. Journal of Hazardous Materials, 2009, 169(1/2/3):1-15.
    [6] Cornelissen G, Breedveld G D, Naes K, et al. Bioaccumulation of native polycyclic aromatic hydrocarbons from sediment by a polychaete and a gastropod:Freely dissolved concentrations and activated carbon amendment[J]. Environmental Toxicology and Chemistry, 2006, 25(9):2349-2355.
    [7]刘杰.土壤多环芳烃(PAHs)污染对氨氧化菌及微生物群落结构的影响研究[D].北京:北京林业大学, 2011.LIU Jie. The influence on ammonia oxidizing microorganisms and microbial community structure under soil PAHs pollution[D]. Beijing:Beijing Forestry University, 2011.
    [8] Lipinska A, Kucharski J, Wyszkowska J, et al. Urease activity in soil contaminated with polycyclic aromatic hydrocarbons[J]. Polish Journal of Environmental Studies, 2013, 22(5):1393-1400.
    [9] Xiao R, Bai J H, Huang L B, et al. Distribution and pollution, toxicity and risk assessment of heavy metals in sediments from urban and rural rivers of the Pearl River delta in southern China[J]. Ecotoxicology,2013, 22(10):1564-1575.
    [10] Xiao R, Bai J H, Wang J J, et al. Polycyclic aromatic hydrocarbons(PAHs)in wetland soils under different land uses in a coastal estuary:Toxic levels, sources and relationships with soil organic matter and water-stable aggregates[J]. Chemosphere, 2014, 110:8-16.
    [11]聂二旗,张心昱,郑国砥,等.氮磷添加对杉木林土壤碳氮矿化速率及酶动力学特征的影响[J].生态学报, 2018, 38(2):615-623.NIE Er-qi, ZHANG Xin-yu, ZHENG Guo-di, et al. Effects of nitrogen and phosphorus additions on soil organic carbon and nitrogen mineralization and hydrolase kinetics in Chinese fir plantations[J]. Acta Ecologica Sinica, 2018, 38(2):615-623.
    [12]刘颖慧,李悦,牛磊,等.温度和湿度对内蒙古草原土壤氮矿化的影响[J].草业科学, 2014, 31(3):349-354.LIU Ying-hui, LI Yue, NIU Lei, et al. Effects of temperature and moisture on nitrogen mineralization in Inner Mongolia grassland, China[J]. Pratacultural Science, 2014, 31(3):349-354.
    [13] Xiong Y M, Zeng H, Xia H P, et al. Interactions between leaf litter and soil organic matter on carbon and nitrogen mineralization in six forest litter-soil systems[J]. Plant and Soil, 2014, 379(1/2):217-229.
    [14] Falciglia P P, Guidi G D, Catalfo A, et al. Remediation of soils contaminated with PAHs and nitro-PAHs using microwave irradiation[J].The Chemical Engineering Journal, 2016, 296:162-172.
    [15] Zhang S Y, Wang Q F, Xie S G, et al. Microbial community changes in contaminated soils in response to phenanthrene amendment[J]. International Journal of Environmental Science and Technology, 2011, 8(2):321-330.
    [16] Schinner F, Oehlinger R, Kandeler E, et al. Methods in soil biology[M]. Berlin:springer-verlag, 1996.
    [17] Dou Z, Toth J D, Jabro J D, et al. Soil nitrogen mineralization during laboratory incubation:Dynamics and model fitting[J]. Soil Biology and Biochemistry, 1996, 28(4/5):625-632.
    [18]解成杰,郭雪莲,余磊朝,等.滇西北高原纳帕海湿地土壤氮矿化特征[J].生态学报, 2013, 33(24):7782-7787.XIE Cheng-jie, GUO Xue-lian, YU Lei-chao, et al. Net nitrogen mineralization in soils of Napahai wetland in northwest Yunnan[J]. Acta Ecologica Sinica, 2013, 33(24):7782-7787.
    [19] Booth M S, Rastetter E, Stark J. Controls on nitrogen cycling in terrestrial ecosystems:A synthetic analysis of literature data[J]. Ecological Monographs, 2005, 75(2):139-157.
    [20]沈国清,陆贻通,洪静波,等.菲和镉复合污染对土壤微生物的生态毒理效应[J].环境化学, 2005, 24(6):662-665.SHEN Guo-qing, LU Yi-tong, HONG Jing-bo, et al. Ecotoxicological effect of phenanthrene and Cd combined pollution on soil microbe[J].Environmental Chemistry, 2005, 24(6):662-665.
    [21]姚炎红,王明霞,左小虎,等.典型油田多环芳烃污染对土壤反硝化微生物群落结构的影响[J].环境科学, 2016, 37(12):4750-4759.YAO Yan-hong, WANG Ming-xia, ZUO Xiao-hu, et al. Effects of PAHs pollution on the community structure of denitrifiers in a typical oilfield[J]. Environmental Science, 2016, 37(12):4750-4759.
    [22] Guo G X, Deng H, Qiao M, et al. Effect of pyrene on denitrification activity and abundance and composition of denitrifying community in an agricultural soil[J]. Environmental Pollution, 2011, 159(7):1886-1895.
    [23] Zhan X H, Wu W Z, Zhou L X, et al. Interactive effect of dissolved organic matter and phenanthrene on soil enzymatic activities[J]. Journal of Environmental Sciences, 2010, 22(4):607-614.
    [24]葛高飞,郑彬,王景,等.菲不同污染方式对土壤酶活性的影响[J].核农学报, 2013, 27(10):1560-1566.GE Gao-fei, ZHENG Bin, WANG Jing, et al. Effect of phenanthrene pollution with one-time and cumulative patterns on soil enzymatic activity[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(10):1560-1566.
    [25]宫璇,李培军,张海荣,等.菲对土壤酶活性的影响[J].农业环境科学学报, 2004, 23(5):981-984.GONG Xuan, LI Pei-jun, ZHANG Hai-rong, et al. Effects of phenanthrene contamination on enzyme activity in soil[J]. Journal of AgroEnvironment Science, 2004, 23(5):981-984.
    [26]杨骏达.多环芳烃对红树植物及其土壤的生态效应[D].深圳:深圳大学, 2015.YANG Jun-da. Ecological effects of PAHs on mangroves and soil[D].Shenzhen:Shenzhen University, 2015.
    [27]王蒙蒙,朱金峰,贾健,等.植烟土壤化学性质与酶活性的典型相关分析[J].山东农业科学, 2016(1):87-90.WANG Meng-meng, ZHU Jin-feng, JIA Jian, et al. Canonical correlation analysis between tobacco soil chemical properties and enzyme activity[J]. Shandong Agricultural Sciences, 2016(1):87-90.
    [28] Roscoe R, Vasconcellos C A, Furtini-Neto A E, et al. Urease activity and its relation to soil organic matter, microbial biomass nitrogen and urea-nitrogen assimilation by maize in a Brazilian Oxisol under notillage and tillage systems[J]. Biology and Fertility of Soils, 2000, 32(1):52-59.
    [29]平立凤,骆永明.有机质对多环芳烃环境行为影响的研究进展[J].土壤, 2005, 37(4):362-369.PING Li-feng, LUO Yong-ming. Effects of organic matter on environmental behaviors of polycyclic aromatic hydrocarbons[J]. Soils, 2005,37(4):362-369.
    [30] Nicol G W, Leininger S, Schleper C, et al. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria[J]. Environmental Microbiology, 2010, 10(11):2966-2978.
    [31] Li M, Cao H L, Hong Y G, et al. Spatial distribution and abundances of ammonia-oxidizing archaea(AOA)and ammonia-oxidizing bacteria(AOB)in mangrove sediments[J]. Applied Microbiology and Biotechnology, 2011, 89(4):1243-1254.
    [32] Sun W, Xia C, Xu M, et al. Distribution and abundance of archaeal and bacterial ammonia oxidizers in the sediments of the Dongjiang River, a drinking water supply for Hong Kong[J]. Microbes and Environments, 2013, 28(4):457-465.
    [33] Sims A, Horton J, Gajaraj S, et al. Temporal and spatial distributions of ammonia-oxidizing archaea and bacteria and their ratio as an indicator of oligotrophic conditions in natural wetlands[J]. Water Research,2012, 46(13):4121-4129.
    [34] Jennifer P, Dumont M G, Ralf C. Ammonia oxidation coupled to CO2fixation by archaea and bacteria in an agricultural soil[J]. Proceedings of the National Academy of Sciences of the United States of America,2011, 108(10):4170-4175.
    [35]苏瑜,王为东.我国北方四类土壤中氨氧化古菌和氨氧化细菌的活性及对氨氧化的贡献[J].环境科学学报, 2017, 37(9):3519-3527.SU Yu, WANG Wei-dong. Activity of AOA and AOB and their contributions to ammonia oxidization in four soils in north China[J]. Acta Scientiae Circumstantiae, 2017, 37(9):3519-3527.