用户名: 密码: 验证码:
滨海防护林土壤氮组分对凋落物和根系去除的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of soil nitrogen pool to litter and root exclusion in costal protection forest
  • 作者:梁艺凡 ; 万晓华 ; 桑昌鹏 ; 王民煌 ; 林宇 ; 黄志群
  • 英文作者:LIANG Yifan;WAN Xiaohua;SANG Changpeng;WANG Minhuang;LIN Yu;HUANG Zhiqun;Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education;College of Geographical Science,Fujian Normal University;Changle Dahe State-owned Protection Forest Farm of Fujian Province;
  • 关键词:去除凋落物 ; 去除根系 ; 土壤氮 ; 酶活性 ; 人工林
  • 英文关键词:litter removal;;root trenching;;soil nitrogen;;enzyme activity;;forest plantation
  • 中文刊名:森林与环境学报
  • 英文刊名:Journal of Forest and Environment
  • 机构:湿润亚热带山地生态国家重点实验室培育基地;福建师范大学地理科学学院;福建省长乐大鹤国有防护林场;
  • 出版日期:2019-03-12
  • 出版单位:森林与环境学报
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金项目(41371269,31570604);; 国家重点基础研究发展计划项目(2014CB954003)
  • 语种:中文;
  • 页:18-25
  • 页数:8
  • CN:35-1327/S
  • ISSN:2096-0018
  • 分类号:S714
摘要
在亚热带滨海防护林尾巨桉、湿地松、木麻黄和纹荚相思4种人工林中,设置去除凋落物、去除根系处理,分析土壤易变性氮组分和酶活性对地上、地下碳输入减少的响应。结果显示,处理两年后,去除凋落物和根系对土壤氮组分的影响因树种而异。去除凋落物显著降低尾巨桉人工林土壤铵态氮、硝态氮、矿质氮和微生物生物量氮含量,但去除根系处理对土壤氮组分影响不显著;去除根系显著增加湿地松人工林土壤矿质氮含量;去除根系和凋落物显著降低木麻黄人工林土壤铵态氮含量;去除凋落物和根系均未显著改变纹荚相思人工林土壤氮组分含量。Pearson相关分析结果表明,土壤氮组分含量对处理的响应与β-葡萄糖苷酶、乙酰氨基葡萄糖苷酶、多酚氧化酶和过氧化物酶活性的变化有关。研究发现,来自于凋落物和根系的易变性碳输入减少,会影响微生物对氮的矿化和转化能力。在纹荚相思人工林中,微生物酶活性对去除凋落物和根系响应不敏感,表明纹荚相思人工林对易变性有机质输入的减少具有一定的适应性。
        Litter and root removal trial were conducted to examine the effects of litter and root carbon input on soil labile nitrogen pool and soil enzyme activity in Eucalyptus urophylla × grandis,Pinus elliottii,Casuarina equisetifolia and Acacia aulacocarpa plantations in subtropical China. Results suggested that C input manipulation induced difference in soil labile N pool depending on tree species.After 2-year treatment,roots exclusion didn't affect soil labile N pool,but litter removal significantly reduced soil NH_4~+-N,NO_3~--N,mineral N,and microbial biomass N concentration in E. urophylla × grandis plantation. In P. elliottii plantation,removal of roots significantly increase soil mineral N. In C. equisetifolia plantation,root or litter removal caused significant decrease in soil NH_4~+-N.However,there was no significant difference between the treatment and CK in soil labile N pool in A. aulacocarpa plantation. Pearson correlation analysis showed that the soil labile N change induced by litter-or root-C input might relate with soil β-glucosidase,N-acetyl-β-d-glucosaminidase,polyphenol oxidase and peroxidase enzyme activity. Our results suggested that the reduction in litter-or root-C input may limit microbial functions in N mineralization and transformation processes. No significant response of soil enzyme activity to litter removal and root exclusion suggested a level of adjustability in ecosystem function in A. aulacocarpa plantation.
引文
[1] KAYE J P,BINKLEY D,RHOADES C. Stable soil nitrogen accumulation and flexible organic matter stoichiometry duringprimary floodplain succession[J]. Biogeochemistry,2003,63(1):1-22.
    [2]KNOPS J M H,BRADLEY K L,WEDIN D A. Mechanisms of plant species impacts on ecosystem nitrogen cycling[J]. EcologyLetters,2002,5(3):454-466.
    [3]ANDRIANARISOA K S,ZELLER B,POLY F,et al. Control of nitrification by tree species in a common-garden experiment[J]. Ecosystems,2010,13(8):1 171-1 187.
    [4]LOVETT G M,WEATHERS K C,ARTHUR M A,et al. Nitrogen cycling in a northern hardwood forest:do species matter?[J]. Biogeochemistry,2004,67(3):289-308.
    [5]KAMEI J,PANDEY H N,BARIK S K. Tree species distribution and its impact on soil properties,and nitrogen and phosphorusmineralization in a humid subtropical forest ecosystem of northeastern India[J]. Canadian Journal of Forest Research,2007,39(1):36-47.
    [6]MEIER C L,BOWMAN W D. Links between plant litter chemistry,species diversity,and below-ground ecosystem function[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(50):19 780-19 785.
    [7]SCOTT N A,BINKLEY D. Foliage litter quality and annual net N mineralization:comparison across North American forest sites[J]. Oecologia,1997,111(2):151-159.
    [8]TEMPLER P,FINDLAY S,LOVETT G. Soil microbial biomass and nitrogen transformations among five tree species of theCatskill Mountains,New York,USA[J]. Soil Biology and Biochemistry,2003,35(4):607-613.
    [9]KANERVA S,KITUNEN V,KIIKKILO,et al. Response of soil C and N transformations to tannin fractions originating fromScots pine and Norway spruce needles[J]. Soil Biology and Biochemistry,2006,38(6):1 364-1 374.
    [10]SMOLANDER A,KANERVA S,ADAMCZYK B,et al. Nitrogen transformations in boreal forest soils:does composition ofplant secondary compounds give any explanations?[J]. Plant and Soil,2012,350(1/2):1-26.
    [11]HUANG Z Q,WAN X H,HE Z M,et al. Soil microbial biomass,community composition and soil nitrogen cycling in relationto tree species in subtropical China[J]. Soil Biology and Biochemistry,2013,62:68-75.
    [12]YIN H J,LI Y F,XIAO J,et al. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferousforest under experimental warming[J]. Global Change Biology,2013,19(7):2 158-2 167.
    [13]SUBBARAO G V,ITO O,SAHRAWAT K L,et al. Scope and strategies for regulation of nitrification in agricultural systems:challenges and opportunities[J]. Critical Reviews in Plant Sciences,2006,25(4):303-335.
    [14]NADELHOFFER K J,BOONE R D,BOWDEN R D,et al. The DIRT experiment:litter and root influences on forest soilorganic matter stocks and function[M]∥FOSTER D R,ABER J D. Forest Landscape Dynamics in New England:EcosystemStructure and Function as a Consequence of 5000 Years of Change. Oxford:Oxford University Press,2004.
    [15]LAJTHA K,CROW S E,YANO Y,et al. Detrital controls on soil solution N and dissolved organic matter in soils:a fieldexperiment[J]. Biogeochemistry,2005,76(2):261-281.
    [16] WANG Q K,HE T X,WANG S L,et al. Carbon input manipulation affects soil respiration and microbial communitycomposition in a subtropical coniferous forest[J]. Agricultural and Forest Meteorology,2013,178-179:152-160.
    [17]PARK J H,MATZNER E. Controls on the release of dissolved organic carbon and nitrogen from a deciduous forest floorinvestigated by manipulations of aboveground litter inputs and water flux[J]. Biogeochemistry,2003,66(3):265-286.
    [18]FEKETE I,VARGA C,KOTROCZZ,et al. The relation between various detritus inputs and soil enzyme activities in aCentral European deciduous forest[J]. Geoderma,2011,167-168:15-21.
    [19]KOTROCZZ,VERES Z,FEKETE I,et al. Soil enzyme activity in response to long-term organic matter manipulation[J].Soil Biology and Biochemistry,2014,70:237-243.
    [20]VERES Z,KOTROCZZ,FEKETE I,et al. Soil extracellular enzyme activities are sensitive indicators of detrital inputsand carbon availability[J]. Applied Soil Ecology,2015,92:18-23.
    [21]DICK R P,BREAKWELL D P,TURCO R F. Soil enzyme activities and biodiversity measurements as integrative microbiologicalindicators[M]∥DORAN J W,JONES A J. Methods for Assessing Soil Quality. Madison:SSSA Special Publication,1996.
    [22]戴腾飞,席本野,闫小莉,等.施肥方式和施氮量对欧美108杨人工林土壤氮素垂向运移的影响[J].应用生态学报,2015,26(6):1 641-1 648.
    [23]魏志超,孟李群,李惠通,等.生物炭对杉木人工林土壤氮素的影响[J].森林与环境学报,2017,37(1):60-66.
    [24]张景普,于立忠,刘利芳,等.不同作业方式对落叶松人工林土壤养分及酶活性的影响[J].生态学杂志,2016,35(6):1 403-1 410.
    [25]吕小燕,何斌,吴永富,等.连栽桉树人工林土壤有机碳氮储量及其分布特征[J].热带作物学报,2017,38(10):1 874-1 880.
    [26]SAIYA-CORK K R,SINSABAUGH R L,ZAK D R. The effects of long term nitrogen deposition on extracellular enzymeactivity in an Acer saccharum forest soil[J]. Soil Biology and Biochemistry,2002,34(9):1 309-1 315.
    [27]TURNER B L,HOPKINS D W,HAYGARTH P M,et al.β-Glucosidase activity in pasture soils[J]. Applied Soil Ecology,2002,20(2):157-162.
    [28]KRAKOMPERGER Z,TTH J A,VARGA C,et al. The effect of litter input on soil enzyme activity in an oak forest[J].Cereal Research Communications,2008,36(5):323-326.
    [29] SINSABAUGH R L,ANTIBUS R K,LINKINS A E,et al. Wood decomposition:nitrogen and phosphorus dynamics inrelation to extracellular enzyme activity[J]. Ecology,1993,74(5):1 586-1 593.
    [30]ZHOU X Q,CHEN C R,WANG Y F,et al. Warming and increased precipitation have differential effects on soil extracellularenzyme activities in a temperate grassland[J]. Science of the Total Environment,2013,444:552-558.
    [31]SINSABAUGH R L. Phenol oxidase,peroxidase and organic matter dynamics of soil[J]. Soil Biology and Biochemistry,2010,42(3):391-404.
    [32]BRANT J B,MYROLD D D,SULZMAN E W. Root controls on soil microbial community structure in forest soils[J]. Oecologia,2006,148(4):650-659.
    [33]FEKETE I,KOTROCZZ,VARGA C,et al. Alterations in forest detritus inputs influence soil carbon concentration andsoil respiration in a Central-European deciduous forest[J]. Soil Biology and Biochemistry,2014,74:106-114.
    [34]FENG W T,ZOU X M,SCHAEFER D. Above-and belowground carbon inputs affect seasonal variations of soil microbialbiomass in a subtropical monsoon forest of southwest China[J]. Soil Biology and Biochemistry,2009,41(5):978-983.
    [35] CARREIRO M M,SINSABAUGH R L,REPERT D A,et al. Microbial enzyme shifts explain litter decay responses tosimulated nitrogen deposition[J]. Ecology,2000,81(9):2 359-2 365.
    [36]MATSUSHIMA M,CHANG S X. Effects of understory removal,N fertilization,and litter layer removal on soil N cycling ina 13-year-old white spruce plantation infested with Canada bluejoint grass[J]. Plant and Soil,2007,292(1/2):243-258.
    [37]陆耀东,薛立,曹鹤,等.去除地面枯落物对加勒比松(Pinus caribaea)林土壤特性的影响[J].生态学报,2008,28(7):3 205-3 211.
    [38]LI X. Nutrient cycling in a Chinese-fir(Cunninghamia lanceolata)stand on a poor site in Yishan,Guangxi[J]. ForestEcology and Management,1996,89(1/2/3):115-123.
    [39]GARCA-OLIVA F,SVESHTAROVA B,OLIVA M. Seasonal effects on soil organic carbon dynamics in a tropical deciduousforest ecosystem in western Mexico[J]. Journal of Tropical Ecology,2003,19(2):179-188.
    [40]AMARAL H F,SENA J O A,SCHWAN-ESTRADA K R F,et al. Soil chemical and microbial properties in vineyards underorganic and conventional management in southern Brazil[J]. Revista Brasileira de Ciência do Solo,2011,35(5):1 517-1 526.
    [41]WEINTRAUB S R,WIEDER W R,CLEVELAND C C,et al. Organic matter inputs shift soil enzyme activity and allocationpatterns in a wet tropical forest[J]. Biogeochemistry,2013,114(1/2/3):313-326.
    [42]ROSS D J,SCOTT N A,TATE K R,et al. Root effects on soil carbon and nitrogen cycling in a Pinus radiata D. Donplantation on a coastal sand[J]. Australian Journal of Soil Research,2001,39(5):1 027-1 039.
    [43]LAVOIE M,BRADLEY R L. Short-term increases in relative nitrification rates due to trenching in forest floor and mineralsoil horizons of different forest types[J]. Plant and Soil,2003,252(2):367-384.
    [44]KUZYAKOV Y,FRIEDEL J K,STAHR K. Review of mechanisms and quantification of priming effects[J]. Soil Biologyand Biochemistry,2000,32(11/12):1 485-1 498.
    [45]刘星,王娜,赵博,等.改变碳输入对太岳山油松林土壤酶活性的影响[J].应用与环境生物学报,2014,20(4):655-661.
    [46]桑昌鹏,万晓华,余再鹏,等.凋落物和根系去除对滨海沙地土壤微生物群落组成和功能的影响[J].应用生态学报,2017,28(4):1 184-1 196.
    [47]林宝平,林思祖,何宗明,等.不同碳输入方式对沿海防护林土壤氮库的影响[J].森林与环境学报,2016,36(4):385-391.
    [48]陈玉平,吴佳斌,张曼,等.枯落物处理对森林土壤碳氮转化过程影响研究综述[J].亚热带资源与环境学报,2012,7(2):84-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700