用户名: 密码: 验证码:
川西北高寒牧区不同人工草地对土壤微生物多样性影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Difference in soil microbial diversity in artificial grasslands of the Northwest Plateau of Sichuan Province
  • 作者:伍文宪 ; 张蕾 ; 黄小琴 ; 杨潇湘 ; 薛龙海 ; 刘勇
  • 英文作者:WU Wen-xian;ZHANG Lei;HUANG Xiao-qin;YANG Xiao-xiang;XUE Long-hai;LIU Yong;Institute of Plant Protection, Sichuan Academy of Agricultural Sciences;Key Laboratory of Integrated Pest Management in Southwest Agriculture Crops of Ministry of Agriculture;
  • 关键词:川西北高寒牧区 ; 人工草地 ; 高通量测序 ; 微生物多样性
  • 英文关键词:Northwest Sichuan alpine pastoral regions;;artificial grassland;;high-throughput sequencing;;microbial diversity
  • 中文刊名:草业学报
  • 英文刊名:Acta Prataculturae Sinica
  • 机构:四川省农业科学院植物保护研究所;农业部西南作物有害生物综合治理重点实验室;
  • 出版日期:2019-03-20
  • 出版单位:草业学报
  • 年:2019
  • 期:03
  • 基金:农业公益性行业计划和草地病害防治技术研究与示范(201303057)资助
  • 语种:中文;
  • 页:31-43
  • 页数:13
  • CN:62-1105/S
  • ISSN:1004-5759
  • 分类号:S812.2
摘要
为阐明人工种植牧草对川西北高寒草地生态系统土壤微生物群落结构和组成的影响,以川西北高寒牧区紫花苜蓿人工草地(Group 1)、燕麦人工草地(Group 2)以及天然草地(Group 3)土壤为对象,采用Illumina Hiseq测序平台对3个草地类型土壤细菌的16S rDNA和真菌的内转录间隔区(Internal Transcribed Spacer,ITS)基因进行序列测定,分析了各样本土壤微生物群落的组成和结构特征。结果表明:1)3种草地植被类型中土壤细菌群落丰富度和多样性无明显差异,真菌群落丰富度亦无显著差异,仅紫花苜蓿人工草地真菌群落多样性程度较燕麦人工草地和天然草地土壤高。2)所测土壤样本主要优势细菌类群为变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)、放线菌门(Actinobacteria)、疣微菌门(Verrucomicrobia)等,人工草地土壤中酸杆菌门丰度显著低于天然草地土壤(P<0.05),放线菌门丰度显著高于天然草地土壤(P<0.05)。主要优势细菌纲为Spartobacteria纲、α-变形菌纲(α-proteobacteria)、β-变形杆菌纲(β-proteobacteria)、Thermoleophilia纲、酸杆菌纲(Acidobacteria)和放线菌纲(Actinobacteria)等,人工草地与天然草地土壤中多种优势细菌纲相对丰度存在显著性差异(P<0.05)。3)3种草地植被类型土壤优势真菌门是子囊菌门(Ascomycota)、接合菌门(Zygomycota)、担子菌门(Basidiomycota);优势真菌纲有接合菌纲(Zygomycotes)、粪壳菌纲(Sordariomycetes)、伞菌纲(Agaricomycetes)、锤舌菌纲(Leotiomycetes)、座囊菌纲(Dothideomycetes)等,并且各区组间多种优势真菌纲相对丰度差异明显。4)β-多样性结果显示3种草地植被类型土壤细菌和真菌结构均差异明显,且天然草地与人工草地之间的土壤微生物差异系数大于两种人工草地之间的土壤微生物差异系数;聚类分析显示人工种植牧草显著提高了土壤中生防菌类群的相对丰度,同时,土壤中病原真菌的丰度较天然草地土壤也大幅增加。
        In order to determine the influence of sown species in artificial grassland on soil microbial diversity in the Northwest Plateau of Sichuan province, an experiment was set up comparing stands of Medicago sativa(Ms), Avena sativa(As), and natural grassland(NG). The microbial community composition and structure of soil samples from the three vegetation types were analyzed by using Illumina Hiseq high-throughput sequencing technology. The results showed: 1) There was no significant difference among the three vegetation types with respect to the abundance and diversity of bacterial communities isolated from soil samples. The fungal community was nearly the same for As and NG, while Ms had higher fungal diversity than the other two vegetation types. 2) The dominant phyla of bacteria for the three samples were Proteobacteria, Acidobacteria, Actinobacteria and Verrucomicrobia. Acidobacteria were less abundant in the As soil than in the NG soil(P<0.05), whereas Actinobacteria had higher relative abundance in the As soil than in the NG soil(P<0.05). At the class level, Spartobacteria, α-proteobacteria, β-proteobacteria, Thermoleophilia, Acidobacteria and Actinobacteria were the predominant bacterial communities, and their relative abundance differed significantly among the three vegetation types(P<0.05). 3) The dominant fungal phyla were Ascomycota, Zygomycota, and Basidiomycota. The dominant taxonomic classes were Zygomycotes, Sordariomycetes, Agaricomycetes, Leotiomycetes, and Dothideomycetes, and the relative abundance of these dominant classes also differed significantly among the three vegetation types. 4) Beta-diversity analyses showed that the structure of soil fungal communities were significantly different among the three vegetation types, and soil microbial diversity coefficients for NG were greater than those for Ms and As. A cluster analysis showed that restoration by artificial grassland increased the relative abundance of beneficial microbes, but the relative abundance of soil plant pathogenic fungi was also significantly increased.
引文
[1]Liu M C, Li D Q, Wen Y M, et al. The ecological function analysis and evaluation of ecosystem in Sanjiangyuan region. Acta Scientiae Circumstantiae, 2005, 25(9): 1280-1286.刘敏超, 李迪强, 温琰茂, 等. 三江源地区生态系统生态功能分析及其价值评估. 环境科学学报, 2005, 25(9): 1280-1286.
    [2]Jiang S L, Hu Y F, Pu Q, et al. Changes in soil nitrogen characteristics during grassland desertification in Northwest Sichuan. Acta Ecologica Sinica, 2016, 36(15): 4644-4653.蒋双龙, 胡玉福, 蒲琴, 等. 川西北高寒草地沙化过程中土壤氮素变化特征. 生态学报, 2016, 36(15): 4644-4653.
    [3]Pu Q, Hu Y F, Li H W, et al. Characteristics of organic carbon and nitrogen in rhizosphere soil under 2 sand-fixation shrub of alpine desertified grassland. Journal of Soil and Water Conservation, 2016, 30(2): 272-276.蒲琴, 胡玉福, 李亨伟, 等. 高寒草地2种固沙灌木根际土壤碳氮特征. 水土保持学报, 2016, 30(2): 272-276.
    [4]Li S J, Jia C. Formation reasons and restoration strategy of the alpine degraded grassland in Northwest of Sichuan. Journal of Sichuan Forestry Science and Technology, 2013, 34(6): 89-92.李守剑, 贾程. 川西北高寒草地退化成因及恢复对策. 四川林业科技, 2013, 34(6): 89-92.
    [5]Cui Y. Effect on production performance and soil properties of artificial grassland mixed sowing oats and common vetch. Lanzhou: Gansu Agricultural University, 2014. 崔莹. 燕麦和箭筈豌豆混播对人工草地生产性能及土壤性质的影响. 兰州: 甘肃农业大学, 2014.
    [6]Yang Y F, Wu L W, Lin Q Y, et al. Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Global Change Biology, 2013, 19(2): 637-648.
    [7]Kennedy A C, Smith K L. Soil microbial diversity and the sustainability of agricultural soils. Plant & Soil, 1995, 170: 75-86.
    [8]Fang Y, Wang W, Yao X D, et al. Soil microbial community composition and environmental controls in northern temperate steppe of China. Acta Scientiarum Naturalium Universitatis Pekinensis (Natural Science Edition), 2017, 53(1): 142-150.方圆, 王娓, 姚晓东, 等. 我国北方温带草地土壤微生物群落组成及其环境影响因素. 北京大学学报(自然科学版), 2017, 53(1): 142-150.
    [9]Mitchell R J, Keith A M, Potts J M, et al. Overstory and understory vegetation interact to alter soil community composition and activity. Plant & Soil, 2012, 352(1/2): 65-84.
    [10]Wu X D, Zhang X J, Xie Y Z, et al. Vertical distribution characters of soil organic carbon and soil enzyme activity in alfalfa field with different growing years. Acta Prataculturae Sinica, 2013, 22(1): 245-251.吴旭东, 张晓娟, 谢应忠, 等. 不同种植年限紫花苜蓿人工草地土壤有机碳及土壤酶活性垂直分布特征. 草业学报, 2013, 22(1): 245-251.
    [11]Jia Q M, Chen Y Y, Yang Y, et al. Effect of different artificial grassland on soil physic-chemical properties and microbial quantities of abandoned land in arid area. Journal of Soil and Water Conservation, 2014, 28(1): 178-220.贾倩民, 陈彦云, 杨阳, 等. 不同人工草地对干旱区弃耕地土壤理化性质及微生物数量的影响. 水土保持学报, 2014, 28(1): 178-220.
    [12]Yang X Z, Wang C T, Zi H B, et al. Soil microbial community structure characteristics in artificial grassland with different cultivation years in the headwater region of Three Rivers, China. Chinese Journal of Applied and Environmental Biology, 2015, 21(2): 341-349.杨希智, 王长庭, 字洪标, 等. 三江源区不同建植年限人工草地土壤微生物群落结构特征. 应用与环境生物学报, 2015, 21(2): 341-349.
    [13]Jiang R T, Li F C, Shen S T. Effects of different age of alpine desertification land planted branchy tamarisk on soil aggregates and organic carbon on Northwestern Sichuan. Journal of Soil and Water Conservation, 2018, 32(1): 197-203.江仁涛, 李富程, 沈凇涛. 不同年限红柳恢复川西北高寒沙地对土壤团聚体和有机碳的影响. 水土保持学报, 2018, 32(1): 197-203.
    [14]Zheng Q Y, Liu G, Xiao B X, et al. Effect of grazing intensity on species richness and biomass of alpine meadow in Northwest Sichuan. Pratacultural Science, 2017, 34(7): 1390-1396.郑群英, 刘刚, 肖冰雪, 等. 放牧对川西北高寒草甸植物物种丰富度和生物量的影响. 草业科学, 2017, 34(7): 1390-1396.
    [15]She S F, Hu Y F, Shu X Y, et al. Variation of C, N and P stoichiometry in dominant understory plants during stand development in Salix cupularis plantations in alpine grassland in Northwestern Sichuan, China. Acta Prataculturae Sinica, 2018, 27(4): 123-130.佘淑凤, 胡玉福, 舒向阳, 等. 川西北高寒沙地不同年限高山柳林下优势植物碳、氮、磷生态化学计量特征. 草业学报, 2018, 27(4): 123-130.
    [16]Gao X F, Han G D, Zhang G G. Soil microbial community structure and composition of Stipa breviflora on the desert steppe. Acta Ecologica Sinica, 2017, 37(15): 5129-5136.高雪峰, 韩国栋, 张国刚. 短花针茅荒漠草原土壤微生物群落组成及结构. 生态学报, 2017, 37(15): 5129-5136.
    [17]Caporaso J G, Lauber C L, Walters W A, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(Supple 1): 4516-4522.
    [18]Zinger L, Shahnavaz B, Baptist F, et al. Microbial diversity in alpine tundra soils correlates with snow cover dynamics. The ISME Journal, 2009, 3(7): 850.
    [19]Mago? T, Salzberg S L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011, 27(21): 2957-2963.
    [20]Zhao A H, Du X J, Zang J, et al. Soil bacterial diversity in the Baotianman deciduous broad-leaved forest. Biodiversity Science, 2015, 23(5): 649-657.赵爱花, 杜晓军, 臧婧, 等. 宝天曼落叶阔叶林土壤细菌多样性. 生物多样性, 2015, 23(5): 649-657.
    [21]Stackebrandt E, Goebel B M. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic Bacteriology, 1994, 44(14): 846-849.
    [22]Cole J R, Wang Q, Fish J A, et al. Ribosomal database project: Data and tools for high throughput rRNA analysis. Nucleic Acids Research, 2014, 42(Database): D633-D642.
    [23]Wang Q, Garrity G M, Tiedje J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 2007, 73(16): 5261-5267.
    [24]Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 2013, 41(Database): D590-D596.
    [25]Edgar R C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 2004, 32(5): 1792-1797.
    [26]Li B, Zhang X, Guo F, et al. Characterization of tetracycline resistant bacterial community in saline activated sludge using batch stress incubation with high-throughput sequencing analysis. Water Research, 2013, 47(13): 4207-4216.
    [27]Mao Y F, Yu W Z, Wang Z H, et al. Effects of applying vitamin B6 to soil on soil microbial diversity of apple orchard. Journal of Plant Nutrition and Fertilizers, 2018, 24(2): 394-403.毛云飞, 于文章, 王增辉, 等. 土施维生素B6对苹果园土壤微生物多样性的影响. 植物营养与肥料学报, 2018, 24(2): 394-403.
    [28]Spain A M, Krumholz L R, Elshahed M S. Abundance, composition, diversity and novelty of soil Proteobacteria. The ISME Journal, 2009, 3(8): 992-1000.
    [29]Fierer N, Bradford M A, Jackson R B. Toward an ecological classification of soil bacteria. Ecology, 2007, 88(6): 1354-1364.
    [30]Dion P. Extreme views on prokaryote evolution//Microbiology of extreme soils. Berlin, Heidelberg: Springer, 2008: 45-70.
    [31]Zhu L, Huang J, Chen T Y, et al. Root-associated and endophytic fungal community diversity in Xanthoceras sorbifolia bunge plantation. Journal of Northeast Forestry University, 2015, 43(5): 105-111.朱琳, 黄建, 陈天阳, 等. 文冠果人工林根际土壤真菌和根系内生真菌群落多样性. 东北林业大学学报, 2015, 43(5): 105-111.
    [32]Yelle D J, Ralph J, Lu F, et al. Evidence for cleavage of lignin by a brown rot basidiomycete. Environmental Microbiology, 2008, 10(7): 1844-1849.
    [33]Christina B, Kathrin F, Stephan N, et al. Estimating the phanerozoic history of the Ascomycota lineages: Combining fossil and molecular data. Molecular Phylogenetics and Evolution, 2014, 78(1): 386-398.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700