用户名: 密码: 验证码:
丛枝菌根提高滨海盐碱地植物耐盐性的作用机制及其生态效应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanism and Ecological Effects of Arbuscular Mycorrhizal Fungi on Improving Salt Tolerance of Plants in Coastal Saline–alkaline Land
  • 作者:李少朋 ; 陈昢圳 ; 刘惠芬 ; 郝建朝 ; 周炜 ; 石利军
  • 英文作者:LI Shaopeng;CHEN Peizhen;LIU Huifen;HAO Jianchao;ZHOU Wei;SHI Lijun;College of agronomy & resources and environment, Tianjin agricultural university;Agro-Environmental Protection Institute, Ministry of Agriculture;
  • 关键词:丛枝菌根真菌 ; 滨海盐碱地 ; 耐盐机制 ; 生态功能
  • 英文关键词:arbuscular mycorrhizal fungi(AMF);;coastal saline-alkali soil;;mechanism of salt tolerance;;ecological remediation
  • 中文刊名:生态环境学报
  • 英文刊名:Ecology and Environmental Sciences
  • 机构:天津农学院农学与资源环境学院;农业部环境保护科研监测所;
  • 出版日期:2019-02-18
  • 出版单位:生态环境学报
  • 年:2019
  • 期:02
  • 基金:“十三五”国家重点研发计划项目-黄淮海蔬菜主产区面源污染综合防治技术示范(2018YFD0800402-4);; 天津市教委科研计划项目-盐胁迫下菌根对高粱根系有机酸分泌调控机制(2017KJ184);; 农业部产地环境污染防控重点实验室/天津市农业环境与农产品安全重点实验室开放课题-丛枝菌根与解磷菌互作对盐碱地修复机制
  • 语种:中文;
  • 页:201-208
  • 页数:8
  • CN:44-1661/X
  • ISSN:1674-5906
  • 分类号:S156.4
摘要
滨海盐碱土成陆和复垦年代短,具有土壤含盐高、养分低和矿化度高等特点,增加了植物的定植难度,不利于盐碱地复垦和生态修复。丛枝菌根真菌(Arbuscular Mycorrhizal Fungi,AMF)广泛存在于土壤生态系统中,自然界中90%以上的植物根系都能够与丛枝菌根形成菌根共生体,AMF能提高宿主植物的抗逆性(抗旱、抗盐、抗重金属和耐酸性等)和适应进化,AMF分泌的球囊霉素相关蛋白(Glomalin-related soil protein,GRSP)及其菌丝体促进土壤改良和培肥、保持土壤健康和可持续生产力等方面发挥着重要作用。文章综述了高盐碱胁迫对AMF-宿主植物共生关系的影响,明确AMF的孢子萌发与生长、菌丝体对高盐碱胁迫的响应;重点揭示AMF提高宿主植物对矿质养分和土壤水分的吸收、改善根际盐碱土矿质元素有效性、调控宿主植物生理生化特性、调节宿主植物抗氧化酶的活性和激素参与下的分子调控等方面作用机制,详细诠释AMF提高宿主植物的抗盐性机理;结合滨海盐碱地面临的重要生态问题,解析AMF在盐碱地治理中促进植物生长、提高土壤微生物活性、改善土壤肥力和结构等方面的应用进展和潜力,并结合AMF在盐碱地治理研究中存在的问题以及研究方向进行展望。AMF提高了滨海植物的耐盐性,促进了植物的生长和改善了土壤的微生态环境,AMF不能纯培养的特性限制了其在滨海盐碱地中大面积推广。基于此,今后在AMF菌种筛选、宿主植物的选择和菌种规模生产方面还需持续探索,从而为滨海盐碱地微生物复垦和生态修复提供技术支持。
        Coastal saline–alkaline land is an important land resource. Coastal saline–alkali soil has a short period of land-forming and reclamation. Hence, it has high salinity, low nutrient content, and high mineralization. However, these characteristics increase the difficulty of planting and are thus not conducive to reclamation and ecological restoration of saline–alkali land. Arbuscular mycorrhizal fungi(AMF) exist in soil ecosystem extensively. More than 90% of plant roots can form mycorrhizal symbiosis with arbuscular mycorrhizal fungi. AMF can enhance the resistance of host plants to drought, salt, heavy metals, and acid, and it can make plants adapt to evolution. Glomalin-related proteins secreted by AMF and mycelia can promote the improvement and fertilization of soil. Furthermore, these proteins play an important role in maintaining healthy soil and sustainable productivity. This paper reviewed the effects of high saline–alkali stress on the symbiotic relation of AMF-host plants and clarified the response of spore germination and AMF growth and mycelium to high saline–alkali stress. Furthermore, this paper revealed the action mechanisms of AMF in enhancing the mineral nutrient and water absorption of host plants, improving the availability of mineral elements in rhizosphere saline–alkali soil, regulating and controlling the physiological and biochemical characteristics of host plants, and regulating the activity of antioxidant enzyme and molecular regulation that involves hormones in host plants to provide a detailed explanation of the mechanism of AMF in improving the salt resistance of host plants. With the important ecological and AMF problems of coastal saline–alkali land taken into consideration, this paper analyzed the application progress and potential of AMF in promoting plant growth, increasing the microbial activity of soil, and improving soil fertility and structure to provide theoretical support for microbial reclamation and ecological restoration of coastal saline–alkali land. AMF improves the salt tolerance of coastal plants, promotes the growth of plants, and improves the soil micro-ecological environment. The wide spread of AMF in coastal saline-alkali lands is limited because it cannot be purely cultured. On this basis, the selection of host plants for AMF strain screening and large-scale production of strains should be investigated to provide technical support for the microbial reclamation and ecological restoration of coastal saline-alkali lands. Expected research directions were also presented.
引文
LATEF A H A A,HE C X,2014.Does the inoculation with glomus mosseae improve salt tolerance in pepper plants?[J].Journal of Plant Growth Regulation,33(3):644-653.
    LATEF A H A A,MIRANSARI M,2016.Arbuscular mycorrhizal symbiosis and abiotic stress in plants:A review[J].Journal of plant biology,59(5):407-426.
    AGHABABAEI F,RAIESI F,2015.Mycorrhizal fungi and earthworms reduce antioxidant enzyme activities in maize and sunflower plants grown in Cd-polluted soils[J].Soil biology&biochemistry,86:87-97.
    AL-GARNI S M S,2006.Increasing Na Cl-salt tolerance of a halophytic plant Phragmites australis by mycorrhizal symbiosis[J].Americaneurasian journal of agricultural and environmental science,1:119-126.
    AVERILL C,TURNER B L,FINZI A C,2014.Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage[J].Nature,505(7484):543-545.
    BANO A,ULLAH F,NOSHEEN A,2012.Role of abscisic acid and drought stress on the activities of antioxidant enzymes in wheat[J].Plant Soil Environment,58(4):181-185.
    BIRHANE E,STERCK F J,FETENE,et al.,2012.Arbuscular mycorrhizal fungi enhance photosynthesis,water use efficiency,and growth of frankincense seedlings under pulsed water availability conditions[J].Oecologia,169(4):895-904.
    BOIS G,BERTRAND A,PICHE Y,et al.,2006.Growth,compatible solute and salt accumulation of five mycorrhizal fungal species grown over a range of NaCl concentrations[J].Mycorrhiza,16(2):99-109.
    BOTHE H,2012.Arbuscular mycorrhiza and salt tolerance of plants[J].Symbiosis,58(1-3):7-16.
    CHARPENTIER M,SUN J H,WEN J Q,et al.,2014.Abscisic acid promotion of arbuscular mycorrhizal colonization requires a component of the protein phosphatase 2A Complex[J].Plant Physiology,166(4):2077-2090.
    CHEN Y Y,HU C Y,XIAO J X,2014.Effects of arbuscular mycorrhizal inoculation on the growth,zinc distribution and photosynthesis of two citrus cultivars grown in low-zinc soil[J].Trees,28(5):1427-1436
    CHIEN VH,MARCOALG,YURIKO O,et al.,2014.Positive regulatory role of strigolactone in plant responses to drought and salt stress[J].Proceedings of the National Academy of Sciences,111(2):851-856.
    CUI X C,HU J L,WANG J H,et al.,2016.Reclamation negatively influences arbuscular mycorrhizal fungal community structure and diversity in coastal saline-alkaline land in Eastern China as revealed by Illumina sequencing[J].Applied soil ecology,98:140-149.
    DELAUX P M,BECARD G,COMBIER J P,2013.NSP1 is a component of the Myc signaling pathway[J].New Phytologist,199(1):59-65.
    ETEMADI M,GUTJAHR,C,COUZIGOU JM,et al.,2014.Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis[J].Plant Physiology,166(1):281-292.
    EVELIN H,KAPOOR R,2014.Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants[J].Mycorrhiza,24(3):197-208.
    EVELIN H,KAPOOR R,GIRI B,2009.Arbuscular mycorrhizal fungi in alleviation of salt stress:a review[J].Annals of botany,104:1263-1280.
    FEDYAEVA A V,STEPANOV A V,LYUBUSHKINA I V,et al.,2014.Heat shock induces production of reactive oxygen species and increases inner mitochondrial membrane potential in winter wheat cells[J].Biochemistry,79(11):1202-1210.
    FRIDOVICH I,1986.Biological effects of the superoxide radical[J].Archives of Biochemistry and Biophysics,247(1):1-11.
    GARG N,BAHER N,2013.Role of arbuscular mycorrhizal symbiosis in proline biosynthesis and metabolism of Cicer arietinum L.(Chickpea)genotypes under salt stress[J].Journal of plant growth regulation,32(4):767-778.
    HAJIBPLAND R,DASHTEBANI F,ALIASGHARZAD N,2015.Physiological responses of halophytic C4 grass Aeluropus littoralis to salinity and arbuscular mycorrhizal fungi colonization[J].Photosynthetica,53(4):572-584.
    HAILEMARIAM M,BIRHANE E,GEBRESAMUEL G,et al.,2018.Arbuscular mycorrhiza effects on faidherbia albida(Del.)A.Chev.growth under varying soil water and phosphorus levels in northern Ethiopia[J].Agroforestry systems,92(2):485-498.
    HAMMER E C,RILLING M C,2011.The influence of differentstresses on glomalin levels in an arbuscular mycorrhizal fungus:Salinity increases glomalin content[J].Plos One,6(12):e2842.
    KADIAN N,YADAV K,BADDA N,et al.,2013.AM fungi ameliorates growth,yield and nutrient uptake in Cicer arietinum L.under salt stress[J].Russian agricultural sciences,39(4):321-329.
    KALó,GLEASON C,EDWARDS A,et al.,2005.Nodulation signaling in legumes requires NSP2,a member of the GRAS family of transcriptional regulators[J].Science,308(5729):1786-1789.
    KHALOUFI M,MARTINEZ-ANDUJIAR C,LACHAAL M,et al.,2017.The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato(Solanum lycopersicum L.)plants by modifying the hormonal balance[J].Journal of plant physiology,214:134-144.
    KUMAR A,SHARMA S,MISHRA S,2010.In?uence of arbuscular mycorrhizal fungi and salinity on seedling growth,solute accumulation,and mycorrhizal dependency of Jatropha curcas L.[J].Journal plant growth regulation,29(3):297-306.
    KUMAR V,SHRIRAM V,HOQUE T S,et al.,2017.Glycinebetainemediated abiotic oxidative-stress tolerance in Plants:Physiological and Biochemical mechanisms.Stress signaling in plants:genomics and proteomics perspective[J].Stress Signaling in Plants:Genomics and Proteomics Perspective,2:111-133.
    LAGRANGE A,HUILLIER LL,AMIR H,2013.Mycorrhizal status of Cyperaceae from New Caledonian ultramafic soils:effects of phosphorus availability on arbuscular mycorrhizal colonization of Costularia comosa under field conditions[J].Mycorrhiza,23(8):655-661.
    LI S P,BI Y L,KONG W P,et al.,2015.Application effects of arbuscular mycorrhizal fungi on restoration of ecological environment in mining areas[J].Russian Journal of ecology,46(5):431-437.
    LI X L,ZHU T Y,CHEN Q,et al.,2015.Inner Mongolian steppe arbuscular mycorrhizal fungal communities respond more strongly to water availability than to nitrogen fertilization[J].Environmental Microbiology,17(8):3051-3068.
    LIU S L,GUO X L,FENG G,et al.,2016.Indigenous arbuscular mycorrhizal fungi can alleviate salt stress and promote growth of cotton and maize in saline fields[J].Plant and soil,398(1-2):195-206.
    LOVELOCK C E,WRIGHT S F,CLARK D A,et al.,2004.Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape[J].Journal of Eecology,92(2):278-287.
    MORI T,WACHRINRAT C,STAPORN D,et al.,2016.Contrastive effects of inorganic phosphorus addition on soil microbial respiration and microbial biomass in tropical monoculture tree plantation soils in Thailand[J].Agriculture&Natural Resources,50(5):327-330.
    PORCEL R,AROCA R,RUIZ-LOZANO J M,2012.Salinity stress alleviation using Arbuscular mycorrhizal fungi a review[J].Agronomy for sustainable development,32(1):181-200.
    PORRAS-SORIANO A,SORIANO-MARTIN M L,PORRAS-PIEDRA A,et al.,2009.Arbuscular mycorrhizal fungi increased growth,nutrient uptake and tolerance to salinity in olive trees under nursery conditions[J].Journal of plant physiology,166(13):1350-1359.
    RABIE G H,ALMADINI A M,2005.Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress[J].African Journal of Biotechnology,4(3):210-222.
    ROTER P,MALY S,SANKA O,et al.,2017.Is glomalin an appropriate indicator of forest soil reactive nitrogen status?[J].Journal of Plant Nutrition and Soil Science,180(6):694-704.
    SELVAKUMAR G,KIM K,SHAGOL C C,et al.,2017.Spore associated bacteria of arbuscular mycorrhizal fungi improve maize tolerance to salinity by reducing ethylene stress level[J].Plant growth regulation,81(1):159-165.
    SHENG M,TANG M,CHEN H,et al.,2008.Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress[J].Mycorrhiza,18(6-7):287-296.
    SIDDIQUI M N,MOSTOFA M G,AKTER M M,et al.,2017.Impact of salt-induced toxicity on growth and yield-potential of local wheat cultivars:oxidative stress and ion toxicity are among the major determinants of salt-tolerant capacity[J].Chemosphere,187:385-394.
    TALAAT N B,SHAWKY B T,2014.Protective effects of arbuscular mycorrhizal fungi on wheat(Triticum aestivum L.)plants exposed to salinity[J].Environmental and experimental botany,98(1):20-31.
    THOMPSON J P,CLEWETT T G,FISKE M L,2013.Field inoculation with arbuscular-mycorrhizal fungi Overcomes phosphorus and zinc deficiencies of linseed(Linum usitatissimum)in a vertisol subject to long-fallow disorder[J].Plant and Soil,371(1-2):117-137.
    UPRETI KK,BHATT RM,PANNEERSELVAM P,et al.,2016.Morpho-physiological responses of grape rootstock‘dogridge’to arbuscular mycorrhizal fungi inoculation under salinity stress[J].International journal of fruit science,16(2):191-209.
    WANG G Z,LI X,CHRISTIE P,et al.,2016.Response of arbuscular mycorrhizal fungi to soil phosphorus patches depends on context[J].Crop and Pasture Science,67(10):1116-1125.
    WU Q S,PENG Y H,ZOU YN,et al.,2010a.Exogenous polyamines affect mycorrhizal development of Glomus mosseae-colonized citrus(Citrus tangerine)seedlings[J].Science Asia,36:254-258.
    WU Q S,HE X H,ZOU Y N,et al.,2012.Arbuscular mycorrhizas alter root system architecture of Citrus tangerine through regulating metabolism of endogenous polyamines[J].Plant Growth Regulation,68(1):27-35.
    WU Q S,ZOU Y N,HE X H,2010b.Contributions of arbuscular mycorrhizal fungi to growth,photosynthesis,root morphology and ionic balance of citrus seedlings under salt stress[J].Acta Physiology Plant,32(2):297-304.
    YAMATO M,IKEDA S,IWASE K,2008.Community of arbuscular mycorrhizal fungi in a coastal vegetation on Okinawa island and effect of the isolated fungi on growth of sorghum under salt-treated conditions[J].Mycorrhiza,18(5):241-249.
    ZHANG H S,WU X H,LI G,et al.,2011.Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus(Mortierella sp.)and their effects on kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities[J].Biology and fertility of soils,47:543-554.
    ZHANG L,FAN J Q,DING X D,et al.,2014.Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil[J].Soil biology and biochemistry,74:177-183.
    冯固,李晓林,张福锁,等,2000.盐胁迫下丛枝菌根真菌对玉米水分和养分状况的影响[J].应用生态学报,11(4):595-598.FENG G,LI X L,ZHANG F S,et al.,2000.Effect of AM fungi on water and nutrition status of corn plants under salt stress[J].Chinese Journal of Applied Ecology,11(4):595-598.
    冯希环,刘维信,李敏,2016.盐胁迫下丛枝菌根真菌对生菜生长和生理特性的影响[J].青岛农业大学学报,33(4):242-246.FENG X H,LIU W X,LI M,2016.Effects of arbuscular mycorrhizal fungi on growth and physiological indices of lettuce under salt stress[J].Journal of Qingdao Agricultural University(Ziran Kexueban),33(4):242-246.
    龚娜,肖军,杨镇,等,2013.不同菌根真菌对蓝莓根际土壤微生物数量的影响[J].北方园艺(17):175-177.GONG L,XIAO J,YANG Z,et al.,2013.Effects of different mycorrhizal fungi on soil microbial number in the blueberry rhizosphere[J].Northern Horticulture(17):175-177.
    韩冰,郭世荣,贺超兴,等,2012.丛枝菌根真菌对盐胁迫下黄瓜植株生长、果实产量和品质的影响[J].应用生态学报,23(1):154-158.HAN B,GUO S R,HE C X,et al.,2012.Effects of arbuscular mycorrhiza fungi(AMF)on the plant growth,fruit yield,and fruit quality of cucumber under salt stress[J].Chinese Journal of Applied Ecology,23(1):154-158.
    贺学礼,强薇,赵丽莉,2018.丛枝菌根真菌遗传多样性影响因素和维持机制研究进展[J].河北大学学报(自然科学版),38(5):509-516.HE X L,QIANG W,ZHAO L L,2018.Influencing factors and mechanism of genetic diversity of arbuscular mycorrhizal fungi[J].Journal of Hebei University(Natural Science Edition),38(5):509-516.
    侯时季,陈保冬,张莘,2016.丛枝菌根共生建成的信号识别机制[J].微生物学通报,43(12):2693-2699.HOU S J,CHEN B D,ZHANG X,2016.Signal recognition mechanism in establishing arbuscular mycorrhiza symbiosis[J].Microbiology China,43(12):2693-2699.
    金樑,陈国良,赵银,等,2007.丛枝菌根对盐胁迫的响应及其与宿主植物的互作[J].生态环境,16(1):228-233.JIN L,CHEN G L,ZHAO Y,et al.,2007.Response of arbuscular mycorrhizal fungi to salt stressed condition and the interrelation between AMF and host plant[J].Ecology and Environment,16(1):228-233.
    李芳,高萍,段廷玉,2016.AM菌根真菌对非生物逆境的响应及其机制[J].草地学报,24(3):491-500.LI F,GAO P,DUAN T Y,2016.Response and mechanism of arbuscular mycorrhizal fungi to abiotic stress[J].Acta Agrestia Sinica,24(3):491-500.
    李金彪,陈金林,刘光明,等,2014.滨海盐碱地绿化理论技术研究进展[J].土壤通报,45(1):246-251.LI J B,CHEN J L,LIU G M,et al.,2014.Progress of greening theory and technology for coastal saline land[J].Chinese Journal of Soil Science,45(1):246-251.
    梁雪飞,唐梦君,吕立新,等,2018.三种丛枝菌根真菌对茅苍术的生长、生理及主要挥发油成分的影响[J].生态学杂志,37(6):1871-1879.LIANG X F,TANG M J,LV L X,et al.,2018.Effects of three arbuscular mycorrhizal fungi(AMF)species on the growth,physiology,and major components of essential oil of Atractylodes lancea[J].Chinese Journal of Ecology,37(6):1871-1879.
    廖德华,刘俊丽,刘健健,等,2016.植物激素响应和调控丛枝菌根共生研究进展[J].植物营养与肥料学报,22(6):1679-1689.LIAO D H,LIU J L,LIU J J,et al.,2016.Advances in the response and modulation of phytohormones on arbuscular mycorrhizal symbiosis[J].Journal of Plant Nutrition and Fertilizer,22(6):1679-1689.
    林先贵,胡君利,戴珏,等,2017.丛枝菌根真菌群落结构与多样性研究方法概述及实例比较[J].应用于环境生物学报,23(2):343-350.LIN X G,HU J L,DAI J,et al.,2017.Overview and comparison of research methods for determining the community structure and diversity of arbuscular mycorrhizal fungi[J].Chinese Journal of Applied&Environmental Biology,23(2):343-350.
    刘雅辉,王秀萍,刘广明,等,2017.滨海盐土区4种典型耐盐植物盐分离子的积累特征[J].土壤,49(4):782-788.LIU Y H,WANG X P,LIU G M,et al.,2017.Ions absorption and accumulation in four typical salt-tolerant plants in coastal saline soil region[J].Soil,49(4):782-788.
    刘云,孙书洪,2014.不同改良方法对滨海盐碱地修复效果的影响[J].灌溉排水学报,33(4):248-250.LIU Y,SUN S H,2014.Effects of ameliorative measure on physicochemical properties of saline soil in coastal areas[J].Journal of Irrigation and Drainage,33(4):248-250.
    刘智蕾,2015.丛枝菌根真菌提高水稻低温抗性机制:碳、氮代谢及植物激素的作用[D].北京:中国科学院研究生院:17-34.LIU Z L,2015.The mechanisms of arbuscular mycorrhizal fungi-improved rice resistance to low temperature:aspects of C and Nmetabolism with the Involvement of phytohormones[D].Beijing:University of Chinese Academy of Sciences:17-34.
    马晓林,赵明德,王慧春,等,2016.高寒牧草在不同温度和盐胁迫作用下的生理生化响应[J].生态科学,35(3):22-28.MA X L,ZHAO M D,WANG H C,et al.,2016.The physiological and biochemical response of alpine plants to different temperature and salt stress[J].Ecological Science,35(3):22-28.
    全国土壤普查办公室,1998.中国土壤[M].北京:中国农业出版社.Census Office for National Soil,1998.China soil[M].Beijing:China Agriculture Press.
    舒波,李伟才,刘丽琴,等,2016.丛枝菌根真菌与共生植物物质交换研究进展[J].植物营养与肥料学报,22(4):1111-1117.SHU B,LI W C,LIU L Q,et al.,2016.Progress on material exchange between arbuscular mycorrhizal(AM)fungi and host plant:A review[J].Journal of Plant Nutrition and Fertilizer,22(4):1111-1117.
    唐明,2010.丛枝菌根真菌提高植物的耐盐性[M].北京:科学出版社:35-46.TANG M,2010.Arbuscular mycorrhizal fungi increase salt tolerance of plant[M].Beijing:Science press:35-46.
    田蜜,李敏,刘润进,2015.设施栽培黄瓜根内AMF与DSE结构发育特征[J].菌物学报,34(3):402-409.TIAN M,LI M,LIU R J,2015.Colonization features of arbuscular mycorrhizal fungi and dark septate endophytic fungi in roots of cucumber plants in protected cultivation[J].Mycosystema,34(3):402-409.
    田云,卢向阳,何小解,2005.天然植物抗氧化剂清除氧自由基特征研究[J].食品科学,26(6):123-125.TIAN Y,LU X Y,HE X J,2005.Scavenging capacities on oxygen radicals of natural plant antioxidants[J].Food Science,26(6):123-125.
    王发园,刘润进,2002.黄河三角洲盐碱地的丛枝菌根真菌[J].菌物系统,21(2):196-202.WANG F Y,LIU R J,2002.Arbuscular mycorrhizal fungi in saline-alkaline soils of yellow river delta[J].Mycosystema,21(2):196-202.
    王建,周紫燕,凌婉婷,2016.球囊霉素相关土壤蛋白的分布及环境功能研究进展[J].应用生态学报,27(2):634-642.WANG J,ZHOU Z Y,LING W T,2016.Distribution and environmental function of glomalin-related soil protein:A review[J].Chinese Journal of Applied Ecology,27(2):634-642.
    王合云,李红丽,董智,等,2015.滨海盐碱地不同造林树种林地土壤盐碱化特征[J].土壤学报,52(3):706-711.WANG H Y,LI H L,DONG Z,et al.,2015.Salinization characteristics of afforested coastal saline soil as affected by species of trees used in afforestation[J].Acta Pedologica Sinica,52(3):706-711.
    王英男,2016.羊草-丛枝菌根共生体对氮沉降与盐碱胁迫互作的生理响应[D].哈尔滨:东北林业大学:14-21.WANG Y N,2016.Physiological responses of Leymus chinensisarbuscular mycorrhizal symbiont to the interaction of nitrogen deposition and salt-alkali stress[D].Haerbing:Northeast Forestry University:14-21.
    王明元,夏仁学,王鹏,2009.丛枝菌根真菌对枳根围不同形态铁的影响[J].微生物学报,49(10):1347-1352.WANG M Y,XIA R X,WANG P,2009.Effects of arbuscular mycorrhizal fungi on different iron species in Poncirus trifoliata rhizospheric soil[J].Acta Microbiologica Sinica,49(10):1347-1352.
    韦莉莉,卢昌熠,丁晶,等,2016.丛枝菌根真菌参与下植物-土壤系统的养分交流及调控[J].生态学报,36(14):4233-4243.WEI L L,LU C Y,DING J,et al.,2016.Functional relationships between arbuscular mycorrhizal symbionts and nutrient dynamics in plant-soil-microbe system[J].Acta Ecologica Sinica,36(14):4233-4243.
    谢小林,顾振红,朱红惠,等,2013.球囊霉素相关土壤蛋白与根系形态的相关性研究[J].菌物学报,32(6):993-1003.XIE X L,GU Z H,ZHU H H,et al.,2013.The relationships between glomalin-related soil protein and root morphology[J].Mycosystema,32(6):993-1003.
    杨海霞,郭绍霞,刘润进,2015.盐碱地生境中丛枝菌根真菌多样性与功能变化特征[J].应用生态学报,26(1):311-320.YANG H X,GUO S X,LIU R J,2015.Characteristics of arbuscular mycorrhizal fungal diversity and functions in saline-alkali land[J].Chinese Journal of Applied Ecology,26(1):311-320.
    钟思远,张静,褚国伟,等,2017.沿海侵蚀台地不同恢复阶段土壤团聚体组成及其与丛枝菌根真菌的关系[J].生态环境学报,26(2):219-226.ZHONG S Y,ZHANG J,CHU G W,et al.,2017.Soil aggregate composition and its relationship with arbuscular mycorrhizal fungi in different restoration stages on severely eroded lands[J].Ecology and Environmental Sciences,26(2):219-226.
    仲召亮,王文杰,王琼,等,2015.松嫩平原农业区土壤理化性质与真菌代谢物-球囊霉素相关蛋白的关系[J].生态学杂志,34(8):2274-2280.ZHONG Z L,WANG W J,WANG Q,et al.,2015.Correlation between soil physicochemical properties and fungiderived glomalinrelated soil proteins in agricultural region of Songnen Plain[J].Chinese Journal of Ecology,34(8):2274-2280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700