用户名: 密码: 验证码:
丛枝真菌对镉胁迫小麦光合系统的调节作用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Regulation of arbuscular mycorrhizal fungi on photosynthesis system of wheat under cadmium stress
  • 作者:赵佳楠 ; 韩蕾蕾 ; 王红霞 ; 李海霞 ; 袁祖丽
  • 英文作者:ZHAO Jianan;HAN Leilei;WANG Hongxia;LI Haixia;YUAN Zuli;College of Life Science,Henan Agricultural University;
  • 关键词:丛枝真菌 ; Cd胁迫 ; 小麦 ; 光合系统
  • 英文关键词:arbuscular mycorrhizal fungi(AMF);;Cd stress;;wheat;;photosynthesis system
  • 中文刊名:河南农业大学学报
  • 英文刊名:Journal of Henan Agricultural University
  • 机构:河南农业大学生命科学学院;
  • 出版日期:2019-04-15
  • 出版单位:河南农业大学学报
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金项目(31771730)
  • 语种:中文;
  • 页:4-10
  • 页数:7
  • CN:41-1112/S
  • ISSN:1000-2340
  • 分类号:S512.1;X503.231
摘要
为了探究丛枝真菌对镉(Cd)胁迫下小麦光合系统的调节作用,采用土培试验,以小麦(Triticum aestivum L.)百农207和摩西球囊霉菌(Glomus mosseae GS)为材料,研究了Cd胁迫下接种丛枝真菌对小麦叶片光合速率、气孔导度、蒸腾速率、胞间CO_2浓度、叶绿素荧光参数、叶绿素含量、微量元素铁(Fe)、镁(Mg)、锌(Zn)和镉(Cd)含量的影响。结果表明,接种丛枝真菌的小麦在5 mg·kg~(-1)Cd胁迫下较未接种小麦,其光合速率、蒸腾速率和气孔导度分别升高了11. 16%、21. 76%和14%,光化学最大效率和叶绿素含量分别升高了5. 56%和6. 56%,Fe、Mg和Zn含量分别升高了6. 63%、20%和4. 29%,Cd含量和胞间CO_2浓度分别降低了18. 50%和17. 62%; 10 mg·kg~(-1)Cd胁迫时,光合速率、蒸腾速率和气孔导度分别升高了28. 65%、41. 25%和50%,光化学最大效率和叶绿素含量分别升高了1. 43%和15. 33%,Fe、Mg和Zn含量分别升高了7. 81%、30. 77%和9. 74%,Cd含量和胞间CO_2浓度分别降低了32. 20%和6. 45%。因此,接种丛枝真菌可以缓解Cd胁迫以及提高小麦叶绿素含量从而增强光合作用。
        To investigate the regulation of arbuscular mycorrhizal fungi( AMF) on photosynthesis of wheat under cadmium( Cd) stress,the pot-experiment was carried out with wheat( Triticum aestivum L.) bainong 207 and Glomus mosseae( GS) as materials. Effects of arbuscular mycorrhizal fungi on photosynthetic rate,conductance to H_2O,transpiration rate,intercellular CO_2 concentration,chlorophyll fluorescence,chlorophyll contents,trace element iron( Fe),magnesium( Mg),zinc( Zn) and cadmium( Cd) contents in wheat leaves were studied under Cd stress. The results showed that the photosynthetic rate,transpiration rate,conductance to H_2O were increased by 11. 16%,21. 76% and14%,chlorophyll fluorescence,chlorophyll content increased 5. 56% and 6. 56%,Fe,Mg and Zn contents increased 6. 63%,20% and 4. 29%,the content of Cd and intercellular CO_2 concentration decreased 18. 50% and 17. 62% under 5 mg·kg-1 Cd stress,respectively. Under 10 mg·kg~(-1) Cd stress,the photosynthetic rate,transpiration rate,conductance to H_2O were increased by 28. 65%,41. 25% and 50%; chlorophyll fluorescence,chlorophyll content were increased by 1. 43% and 15. 33%; Fe,Mg and Zn contents by increased were 7. 81%,30. 77% and 9. 74%,but the contentof Cd and intercellular CO_2 concentration decreased 32. 20% and 6. 45%,respectively. Therefore,inoculation of AMF could alleviate Cd stress and increased the chlorophyll content of wheat to enhance photosynthesis.
引文
[1]宋伟,陈百明,刘琳.中国耕地土壤重金属污染概况[J].水土保持研究,2013,20(2):293-298.
    [2]环境保护部和国土资源部.环境保护部和国土资源部发布全国土壤污染状况调查公报[J].油气田环境保护,2014,24(4):66.
    [3]黎勇,钟格梅,黄江平,等.2011-2013年广西农田土壤镉含量调查[J].环境卫生学杂志,2014,4(6):544-547.
    [4]郭淑文.白银市郊区土壤与主要粮食作物污染情况调查[J].甘肃农业科技,2002,12:32-33.
    [5]GIRISH C,SAIFULLAH,BOLAN N,et al.Cellular mechanisms in higher plants governing tolerance to cadmium toxicity[J].Critical Reviews in Plant Sciences,2014,33(5):374-391.
    [6]HE S Y,YANG X E,HE Z L,et al.Morphological and physiological responses of plants to cadmium toxicity:A review[J].Pedosphere,2017,27(3):421-438.
    [7]GONCALVES J F,NICOLOSO F T,BECKER A G,et al.Photosynthetic pigments content,δ-aminolevulinic acid dehydratase and acid phosphatase activities and mineral nutrients concentration in cadmium-exposed Cucumis sativus L.[J].Biologia,2009,64(2):310-318.
    [8]WAN Y,LUO S L,CHEN J L,et al.Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L.[J].Chemosphere,2012,89(6):743-750.
    [9]CLEMENS S.Molecular mechanisms of plant metal tolerance and homeostasis[J].Planta,2001,212(4):475-486.
    [10]KUPPER H,PARAMESWARAN A,LEITENMAIERB,et al.Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens[J].The New Phytologist,2007,175(4):655-674.
    [11]DRAZIC G,MIHAILOVIC N,STOJANOVIC Z.Cadmium toxicity:the effect on macro-and micro-nutrient contents in soybean seedlings[J].Biologia Plantarum,2004,48(4):605-607.
    [12]LI Y P,WANG S L,PRETE D,et al.Accumulation and interaction of fluoride and cadmium in the soil-wheat plant system from the wastewater irrigated soil of an oasis region in northwest China[J].Science Total Environment,2017,595:344-351.
    [13]MOULIS J M,THEVENOD F.New perspectives in cadmium toxicity:an introduction[J].Biometals,2010,23(5):763-768.
    [14]陈亚茹,张巧凤,付必胜,等.中国小麦微核心种质籽粒铅、镉、锌积累差异性分析及低积累品种筛选[J].南京农业大学学报,2017,40(3):393-399.
    [15]邢维芹,张红毅,吴龙华,等.镉冶炼污染区小麦子粒镉含量及低积累品种筛选[J].农业环境科学学报,2015,34(10):2039-2040.
    [16]陈剑芬,卢小静,曾碧健,等.根际土壤丛枝菌根真菌对重金属积累影响的研究进展[J].农业研究与应用,2017,3:72-77.
    [17]张利红,李培军,李雪梅,等.镉胁迫对小麦幼苗生长及生理特性的影响[J].生态学杂志,2005,24(4):458-460.
    [18]王发园,林先贵.丛枝菌根在植物修复重金属污染土壤中的作用[J].生态学报,2007,27(2):793-801.
    [19]王立,安广楠,马放,等.AMF对镉污染条件下水稻抗逆性及根际固定性的影响[J].农业环境科学学报,2014,33(10):1882-1889.
    [20]祖艳群,卢鑫,湛方栋,等.丛枝菌根真菌在土壤重金属污染植物修复中的作用及机理研究进展[J].植物生理学报,2015,51(10):1538-1548.
    [21]田野,张会慧,孟祥英,等.镉(Cd)污染土壤接种丛枝菌根真菌(Glomus mosseae)对黑麦草生长和光合的影响[J].草地学报,2013,21(1):135-141.
    [22]张晓松,孟祥英,王薇,等.丛枝菌根真菌对镉污染土壤中黑麦草幼苗生长的影响[J].中国土壤与肥料,2015(6):122-127.
    [23]董曙光,郎法勇.不同配方营养液对水培高羊茅的影响[J].安徽农业科学,2013,41(6):2407-2408.
    [24]CHEN F,FANG W,ZHANG G P,et al.Identification of barley varieties tolerant to cadmium toxicity[J].Biological Trace Element Research,2007,121(2):171-179.
    [25]徐新娟,李勇超,张尚攀,等.两种叶绿素提取方法的比较[J].湖北农业科学,2013,52(21):5303-5304;5321.
    [26]BUSCEMA I,PRIETO A,ARAUJO L,et al.Determination of lead and cadmium content in the rice consumed in maracaibo,venezuela[J].Bulletin of Environmental Contamination&Toxicology,1997,59(1):94-98.
    [27]滕开琼,肖琳琳,刘诗慧,等.短时干旱胁迫对水旱稻叶绿素荧光的影响[J].河南农业,2018,4:59-60.
    [28]PADMAJA K,DHULIPALA P D K,PARSAD A.Inhibition of chlorophyll synthesis in phaseolus vulgaris L.seedlings by cadmium acetate[J].Photosynthetica,1990,24:399-404.
    [29]孙园园,关萍,何杉,等.镉胁迫对多花黑麦草镉积累特征、生理抗性及超微结构的影响[J].草业科学,2016,33(8):1589-1597.
    [30]SOMASHEKARAIAH B V,PADMAJA K,PRASAD AR K.Phytotoxicity of cadmium ions on germinating seedlings of mung bean(Phaseolus vulgaris):Involvement of lipid peroxides in chlorophyll degradation[J].Physiologia Plantarum,1992,85(1):85-89.
    [31]王全九.土壤物理与作物生长模型[M].北京:中国水利水电出版社,2016.
    [32]FARQUHAR G D,SHARKEY T D.Stomatal conductance and photosynthesis[J].Annual Review of Plant Physiology,1982,33(1):317-345.
    [33]MUKHOPADHYAY M,DAS A,SUBBA P H,et al.Structural,physiological,and biochemical profiling of tea plantlets under zinc stress[J].Biologia Plantarum,2013,57(3):474-480.
    [34]FLEXAS J.Mesophyll conductance to CO2:current knowledge and future prospects[J].Plant Cell&Environment,2008,31(5):602-621.
    [35]刘超,胡正华,陈健,等.不同CO2浓度升高水平对水稻光合特性的影响[J].生态环境学报,2018,27(2):246-254.
    [36]姚宇洁,姜存仓.缺铁胁迫柑橘砧木幼苗的光合特性和叶绿体超微结构[J].植物营养与肥料学报,2017,23(5):1345-1351.
    [37]沈洁.镁缓解榧树苗木铅胁迫的作用及其机理[D].杭州:浙江农林大学,2016.
    [38]ASSCHE F V,CLIJSTERS H.Effects of metals on enzyme activity in plants[J].Plant Cell&Environment,2010,13(3):195-206.
    [39]NAN Z R,LI J J,ZHANG J M,et al.Cadmium and zinc interactions and their transfer in soil-crop system under actual field conditions[J].Science of the Total Environment,2002,285(1-3):187-195.
    [40]郑洁,胡美君,郭延平.光质对植物光合作用的调控及其机理[J].应用生态学报,2008,19(7):1619-1624.
    [41]郁建锋,王立新,聂玲,等.锌对镉胁迫下豌豆幼苗生长发育的影响[J].安徽农业科学,2008,36(16):6646-6648.
    [42]MOHANED A A,CASTAGNA A,RANIERI A,et al.Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis[J].Plant Physiology&Biochemistry,2012,57:15-22.
    [43]ALCANTARA E,ROMERA J,CANETE M L.Effects of heavy metals on both induction and function of root Fe(III)reductase in Fe-deficient cucumber(Cucumis sativus L.)plants[J].Journal of Experimental Botany,1994,45(281):1893-1898.
    [44]YOSHUHARA T,HODOSHIMA H,MIYANO Y,et al.Cadmium inducible Fe deficiency responses observed from macro and molecular views in tobacco plants[J].Plant Cell Reports,2006,25(4):365-373.
    [45]SOLTI A,SARVARI E,TOTH B,et al.Cd affects the translocation of some metals either Fe-like or Ca-like way in poplar[J].Plant Physiology&Biochemistry,2011,49(5):494-498.
    [46]WANG L,FAN W G,MA K X,et al.Change of mineral elements and amino acids in malus hupehensis var.pingyiensis leaves under Cd treatment[J].Agricultural Sciences,2018,9(2):221-227.
    [47]袁祖丽,马新明,韩锦峰,等.镉胁迫对烟草营养器官发育及矿物质元素的影响[J].河南科学,2005,23(5):679-682.
    [48]MATOVIC V,BULAT Z,DJUKIC C D,Antagonism between cadmium and magnesium:a possible role of magnesium in therapy of cadmium intoxication[J].Magnesium Research Official Organ of the International Society for the Development of Research on Magnesium,2010,23(1):19.
    [49]CIECKO Z,MIERZEJEWSKA A,ZOLNOWSKI A C.Influence of foliar nitrogen and magnesium fertilization on concentration of chlorophyll in potato leaves[J].Ecological Chemistry&Engineering A,2012,19(6):525-535.
    [50]JIN X F,YANG X E,ISLAM E,et al.Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance[J].Journal of Hazardous Materials,2008,156(1):387-397.
    [51]ZHAO H X,WANG L S,ZHAO F J,et al.Sp HMA1is a chloroplast cadmium exporter protecting photochemical reactions in the Cd hyperaccumulator sedum plumbizincicola[J].Plant,Cell&Environment,2018.
    [52]WALKER W M,MILLER J E,HASSETT J J.Effects of Pb and Cd upon the Ca,Mg,K and P concentration in young corn plant[J].Soil science,1977,124:145-151.
    [53]NEMEC S,VU J C V.Effects of soil phosphorus and Glomus intraradices on growth,nonstructural carbohydrates,and photosynthetic activity of Citrus aurantium[J].Plant and Soil,1990,128(2):257-263.
    [54]刘军生,解修超,罗阳兰,等.植物抗镉内生细菌筛选及其对小麦幼苗耐镉能力的影响[J].南方农业学报,2018,49(12):2379-2386.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700