一株3-苯氧基苯甲酸降解菌的筛选及其协同Bacillus licheniformis G-04降解高效氯氰菊酯的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Screening of a 3-phenoxybenzoic acid degrading strain and its co-degradation with Bacillus licheniformis G-04 to degrade beta-cypermethrin
  • 作者:胡琼 ; 唐洁 ; 刘波 ; 陈廷廷 ; 孙擎 ; 张庆
  • 英文作者:Qiong Hu;Jie Tang;Bo Liu;Tingting Chen;Qing Sun;Qing Zhang;School of Food and Bioengineering, Xihua University;Institute of Ancient Brewing, School of Food and Biotechnology, Xihua University;
  • 关键词:3-苯氧基苯甲酸 ; 高效氯氰菊酯 ; 协同降解 ; Acinetobacter ; pittii ; HA516 ; Bacillus ; licheniformisG-04 ; 土壤生物修复
  • 英文关键词:3-phenoxybenzoic acid;;beta-cypermethrin;;co-degradation;;Acinetobacter pittii HA516;;Bacillus licheniformis G-04;;soil bioremediation
  • 中文刊名:微生物学报
  • 英文刊名:Acta Microbiologica Sinica
  • 机构:西华大学食品与生物工程学院;西华大学食品与生物工程学院古法发酵生物技术研究所;
  • 出版日期:2018-05-10 10:07
  • 出版单位:微生物学报
  • 年:2019
  • 期:01
  • 基金:教育部春晖计划项目(Z2015122);; 四川省食品生物技术重点实验室开放基金(SZJJ2014-011);; 西华大学人才培养重点项目(z1310525);西华大学研究生创新基金(ycjj2018021);; 四川省教育厅自然科学项目(114ZB0122)~~
  • 语种:中文;
  • 页:163-174
  • 页数:12
  • CN:11-1995/Q
  • ISSN:0001-6209
  • 分类号:X172;X592
摘要
【目的】从长期受拟除虫菊酯类农药污染的白菜根系土壤分离1株3-苯氧基苯甲酸(3-phenoxybenzoic acid, 3-PBA)降解菌,并探究其与Bacillus licheniformis G-04协同作用对高效氯氰菊酯(beta-cypermethrin,Beta-CP)的降解及污染土壤的生物修复,为土壤农药残留危害处理提供优良菌种。【方法】采用富集驯化、筛选纯化方法,筛选3-PBA降解菌,并通过形态和生理生化特征以及16S rRNA序列分析进行鉴定。利用Origin 8.0分析3-PBA降解菌与B. licheniformis G-04的生长降解动力学过程。同时,采用高效液相色谱法评估两菌株协同降解Beta-CP的能力及其对受Beta-CP污染土壤的修复作用。【结果】筛选得到1株3-PBA高效降解菌HA516,48 h对3-PBA (100 mg/L)的降解率达到87.73%,经鉴定为皮特不动杆菌(Acinetobacter pittii);构建了该菌株和B. licheniformis G-04的生长降解动力学方程,结果表明模型与实验数据能较好拟合;以6.7∶3.3的接种比例先接种B. licheniformis G-04,24 h后再接入A. pittii HA516协同作用,在48 h,Beta-CP (50 mg/L)的降解率达78.37%,较单菌株(B. licheniformisG-04)的降解率(40.47%)提高了37.90%,半衰期从58.39h缩短为24.51h。土壤修复实验表明,第7天协同组对Beta-CP(30mg/kg)的降解率较单菌株提高了33.26%,达到79.27%。【结论】A.pittiiHA516是1株3-PBA高效降解菌,能与B. licheniformis G-04协同增效降解Beta-CP,可作为修复3-PBA或拟除虫菊酯类农药污染的优良微生物资源。
        [Objective] The aim of this study was to isolate an efficient 3-phenoxybenzoic acid(3-PBA) degrading strain from the cabbage rhizosphere contaminated by pyrethroid pesticides. Furthermore, the co-degradation of beta-cypermethrin and soil bioremediation by co-culture of Bacillus licheniformis G-04 and 3-PBA-degrading strain were investigated. [Methods] 3-PBA-degrading strain was screened using enrichment domestication, isolation and purification methods, then identified by morphological, physio-biochemical tests and 16 S rRNA sequence analysis. The growth and degradation kinetics of 3-PBA-degrading strain and B. licheniformis G-04 were analysised by Origin 8.0. The synergistic degradation ability and soils bioremediation of these two strains were evaluated by high performance liquid chromatography(HPLC). [Results] A novel 3-PBA-degrading strain HA516 was screened and identified as Acinetobacter pittii, the degradation rate of 3-PBA(100 mg/L) was 87.73% after 48 h of incubation. The growth and degradation kinetics of these two strains were established, which have the better fitting of predicted and the experimental value. When the inoculation proportion of the biomass of these two strains was 6.7∶3.3, B. licheniformis G-04 was inoculated first, and A. pittii HA516 was inoculated after 24 h of cultivation, 78.37% Beta-CP(50 mg/L) was degraded at 48 h, which was 37.90% higher than only using strain B. licheniformis G-04, and half-life was shortened from 58.39 h to 24.51 h. Soil remediation test showed that the degradation rate of Beta-CP(30 mg/L) reached 79.27% on the seventh day, which was 33.26% higher than only using strain B. licheniformis G-04. [Conclusion] A. pittii HA516, a highly efficient 3-PBA-degrading strain, can be used as a potential strain resource for bioremediation of environment polluted with 3-PBA or pyrethroid pesticides. Beta-CP could be efficiently co-degraded by B. licheniformis G-04 and A. pittii HA516.
引文
[1]CycońM,Piotrowska-Seget Z.Pyrethroid-degrading microorganisms and their potential for the bioremediation of contaminated soils:a review.Frontiers in Microbiology,2016,7:1463.
    [2]Wang P,Zhou ZQ,Jiang SR,Yang L.Chiral resolution of cypermethrin on cellulose-tris(3,5-dimethylphenyl-carbamate)chiral stationary phase.Chromatographia,2004,59(9/10):625-629.
    [3]Weston DP,Holmes RW,Lydy MJ.Residential runoff as a source of pyrethroid pesticides to urban creeks.Environmental Pollution,2009,157(1):287-294.
    [4]Perry MJ,Venners SA,Barr DB,Xu XP.Environmental pyrethroid and organophosphorus insecticide exposures and sperm concentration.Reproductive Toxicology,2007,23(1):113-118.
    [5]Chen SH,Luo JJ,Hu MY,Huang HS,Zhang F.Degradation characteristics and kinetics of beta-cypermethrin by Streptomyces sp.HP-S-01.Microbiology China,2011,38(8):1207-1215.(in Chinese)陈少华,罗建军,胡美英,黄华盛,张芳.链霉菌HP-S-01降解高效氯氰菊酯的特性及其动力学.微生物学通报,2011,38(8):1207-1215.
    [6]Liu Y,Wu AH,Hu J,Lin MM,Wen MT,Zhang X,Xu CX,Hu XD,Zhong JF,Jiao LX,Xie YJ,Zhang CZ,Yu XY,Liang Y,Liu XJ.Detection of 3-phenoxybenzoic acid in river water with a colloidal gold-based lateral flow immunoassay.Analytical Biochemistry,2015,483:7-11.
    [7]Chen SH,Hu MY,Liu JJ,Zhong GH,Yang L,Rizwan-ul-Haq M,Han HT.Biodegradation of beta-cypermethrin and3-phenoxybenzoic acid by a novel Ochrobactrum lupini DG-S-01.Journal of Hazardous Materials,2011,187(1/3):433-440.
    [8]Heudorf U,Angerer J,Drexler H.Current internal exposure to pesticides in children and adolescents in Germany:urinary levels of metabolites of pyrethroid and organophosphorus insecticides.International Archives of Occupational and Environmental Health,2004,77(1):67-72.
    [9]Sun H,Chen W,Xu XL,Ding Z,Chen XD,Wang XR.Pyrethroid and their metabolite,3-phenoxybenzoic acid showed similar(anti)estrogenic activity in human and rat estrogen receptorα-mediated reporter gene assays.Environmental Toxicology and Pharmacology,2014,37(1):371-377.
    [10]White GF,Russell NJ,Tidswell EC.Bacterial scission of ether bonds.Microbiological Reviews,1996,60(1):216-232.
    [11]Guo XQ,Wang XJ,Sun AL,Li DX,Shi XZ.Advances of studies on microbial degradation of pyrethroid insecticides.China Biotechnology,2017,37(5):126-132.(in Chinese)郭晓青,王秀娟,孙爱丽,李德祥,史西志.环境中拟除虫菊酯类农药微生物降解技术研究进展.中国生物工程杂志,2017,37(5):126-132.
    [12]Tang AX,Wang BW,Liu YY,Li QY,Tong ZF,Wei YJ.Biodegradation and extracellular enzymatic activities of Pseudomonas aeruginosa strain GF31 onβ-cypermethrin.Environmental Science and Pollution Research,2015,22(17):13049-13057.
    [13]Liu J,Huang WW,Han HT,She CC,Zhong GH.Characterization of cell-free extracts from fenpropathrindegrading strain Bacillus cereus ZH-3 and its potential for bioremediation of pyrethroid-contaminated soils.Science of the Total Environment,2015,523:50-58.
    [14]Chen SH,Deng YY,Chang CQ,Lee J,Cheng YY,Cui ZN,Zhao JN,He F,Hu MY,Zhang LH.Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19.Scientific Reports,2015,5:8784.
    [15]Xiao Y,Chen SH,Gao YQ,Hu W,Hu MY,Zhong GH.Isolation of a novel beta-cypermethrin degrading strain Bacillus subtilis BSF01 and its biodegradation pathway.Applied Microbiology and Biotechnology,2015,99(6):2849-2859.
    [16]Deng WQ,Lin DR,Yao K,Yuan HY,Wang ZL,Li JL,Zou LK,Han XF,Zhou K,He L,Hu XJ,Liu SL.Characterization of a novelβ-cypermethrin-degrading Aspergillus niger YATstrain and the biochemical degradation pathway ofβ-cypermethrin.Applied Microbiology and Biotechnology,2015,99(19):8187-8198.
    [17]Zhu YT,Li JL,Yao K,Zhao N,Zhou K,Hu XJ,Zou LK,Han XF,Liu AP,Liu SL.Degradation of 3-phenoxybenzoic acid by a filamentous fungus Aspergillus oryzae M-4 strain with self-protection transformation.Applied Microbiology and Biotechnology,2016,100(22):9773-9786.
    [18]Halden RU,Tepp SM,Halden BG,Dwyer DF.Degradation of3-phenoxybenzoic acid in soil by Pseudomonas pseudoalcaligenes POB310(pPOB)and two modified Pseudomonas strains.Applied and Environmental Microbiology,1999,65(8):3354-3359.
    [19]Chen SH,Hu W,Xiao Y,Deng YY,Jia JW,Hu MY.Degradation of 3-phenoxybenzoic acid by a Bacillus sp..PLoSOne,2012,7(11):e50456.
    [20]Tang J,Yao K,Liu SL,Jia DY,Chi YL,Zeng CY,Wu S.Biodegradation of 3-phenoxybenzoic acid by a novel Sphingomonas sp.SC-1.Fresenius Environmental Bulletin,2013,22(5):1564-1572.
    [21]Chen SH,Yang L,Hu MY,Liu JJ.Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp.strain ZS-S-01 and its use in bioremediation of contaminated soils.Applied Microbiology and Biotechnology,2011,90(2):755-767.
    [22]Nzila A.Update on the cometabolism of organic pollutants by bacteria.Environmental Pollution,2013,178:474-482.
    [23]Vallero DA.Chapter 7-applied microbial ecology:bioremediation.Environmental Biotechnology,2010:325-400.
    [24]Luo W,Zhu XC,Chen WT,Duan ZB,Wang L,Zhou Y.Mechanisms and strategies of microbial cometabolism in the degradation of organic compounds-chlorinated ethylenes as the model.Water Science and Technology:A Journal of the International Association on Water Pollution Research,2014,69(10):1971-1983.
    [25]Tran NH,Urase T,Ngo HH,Hu JY,Ong SL.Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants.Bioresource Technology,2013,146:721-731.
    [26]Zhao JY,Chi YL,Xu YC,Jia DY,Yao K.Co-metabolic degradation ofβ-Cypermethrin and 3-phenoxybenzoic acid by co-culture of Bacillus licheniformis B-1 and Aspergillus oryzae M-4.PLoS One,2016,11(11):e0166796.
    [27]Liu FF,Chi YL,Wu S,Jia DY,Yao K.Simultaneous degradation of cypermethrin and its metabolite,3-phenoxybenzoic acid,by the cooperation of Bacillus licheniformis B-1 and Sphingomonas sp.SC-1.Journal of Agricultural and Food Chemistry,2014,62(33):8256-8262.
    [28]Liu B,Tang J,Chen TT,Shi Y,Zeng L,Zeng CY.Isolation and identification of two pyrethroid pesticides degradation strains and research of degradative capabilities.Science and Technology of Food Industry,2017,38(4):214-219,224.(in Chinese)刘波,唐洁,陈廷廷,史颖,曾林,曾朝懿.两株拟除虫菊酯类农药降解菌的分离鉴定及其降解能力的研究.食品工业科技,2017,38(4):214-219,224.
    [29]Tang J,Yao K,Jia DY,Chi YL,Li QP.Isolation and characterization of Beta-cypermethrin degrading strain and its condition optimization.Journal of Sichuan University(Engineering Science Edition),2013,45(4):176-180.(in Chinese)唐洁,姚开,贾冬英,迟原龙,李清平.高效氯氰菊酯降解菌的分离与鉴定及其降解条件优化.四川大学学报(工程科学版),2013,45(4):176-180.
    [30]Liu B,Tang J,Chen TT,Zeng L,Zeng CY,Zhang Q.Screening and characterization of a 3-phenoxybenzoic acid degrading Enterobacter ludwigii.Acta Microbiologica Sinica,2018,doi:10.13343/j.cnki.wsxb.20170305.(in Chinese)刘波,唐洁,陈廷廷,曾林,曾朝懿,张庆.一株路德维希肠杆菌的筛选及其对3-苯氧基苯甲酸的降解特性分析.微生物学报,2018,doi:10.13343/j.cnki.wsxb.20170305.
    [31]Ren L,Shi YH,Jia Y,Yao XS,Nahurira R,Mi CX,Yan YC.Biodegradation characteristics and kinetics of p-nitrophenol by strain Arthrobacter sp.CN2.Environmental Science,2015,36(5):1757-1762.(in Chinese)任磊,史延华,贾阳,姚雪松,Nahurira R,弥春霞,闫艳春.菌株Arthrobacter sp.CN2降解对硝基苯酚的特性与动力学.环境科学,2015,36(5):1757-1762.
    [32]Zhang C,Chen WB,Wu DJ,Wei TD.Remediation of oil-contaminated soil with mixed bacteria.Environmental Protection of Chemical Industry,2014,34(1):19-23.(in Chinese)张超,陈文兵,武道吉,魏天迪.混合菌修复石油污染土壤.化工环保,2014,34(1):19-23.
    [33]Di FR,Song DH,Liu FL,Yang J.Isolation of marine Acinetobacter and its characteristics of petroleum hydrocarbon degradation.Marine Environmental Science,2017,36(6):898-904.(in Chinese)邸富荣,宋东辉,刘凤路,杨劼.分离海洋不动杆菌及其对石油烃降解性能研究.海洋环境科学,2017,36(6):898-904.
    [34]Liu YH,Hu XK.Microbial degradation of petroleum hydrocarbons by Acinetobacter sp.BZ-15,isolated from contaminated soil.Scientia Sinica Vitae,2016,46(9):1091-1100.(in Chinese)刘玉华,胡晓珂.高效石油烃降解菌不动杆菌(Acinetobacter sp.BZ-15)的筛选、鉴定及其降解性能研究.中国科学:生命科学,2016,46(9):1091-1100.
    [35]Wang ZX,Xu Y,Zhou PJ.Taxonomy of a new species of Haloalkalophilic archaeon.Acta Microbiologica Sinica,2000,40(2):115-120.(in Chinese)王振雄,徐毅,周培瑾.嗜盐碱古生菌新种的系统分类学研究.微生物学报,2000,40(2):115-120.
    [36]Yan WZ,Zhang HQ,Yu CT,Lei YF,Hao J,Shi JP.Isolation of Acinetobacter sp.YN3 and its heterotrophic nitrification-aerobic denitrification characters.Chinese Journal of Environmental Engineering,2017,11(7):4419-4428.(in Chinese)颜薇芝,张汉强,余从田,雷艳芳,郝健,史吉平.1株异养硝化好氧反硝化不动杆菌的分离及脱氮性能.环境工程学报,2017,11(7):4419-4428.
    [37]Pailhoriès H,Tiry C,Eveillard M,Kempf M.Acinetobacter pittii isolated more frequently than Acinetobacter baumannii in blood cultures:the experience of a French hospital.The Journal of Hospital Infection,2018,99(3):360-363.
    [38]Purohit A,Rai SK,Chownk M,Sangwan RS,Yadav SK.Xylanase from Acinetobacter pittii MASK 25 and developed magnetic cross-linked xylanase aggregate produce predominantly xylopentose and xylohexose from agro biomass.Bioresource Technology,2017,244:793-799.
    [39]Wang D,Ma XP,Meng XL,Dong WL,Dong X,Xu CB.Screening,identification of a bisphenol A-degrading strain and its growth and degradation conditions.Environmental Protection of Chemical Industry,2017,37(2):189-193.(in Chinese)王迪,马溪平,孟雪莲,董文灵,董兴,徐成斌.一株双酚A降解菌的筛选、鉴定及其生长、降解条件.化工环保,2017,37(2):189-193.
    [40]Sogorb MA,Vilanova E.Enzymes involved in the detoxification of organophosphorus,carbamate and pyrethroid insecticides through hydrolysis.Toxicology Letters,2002,128(1/3):215-228.
    [41]Chen SH,Luo JJ,Hu MY,Lai KP,Geng P,Huang HS.Enhancement of cypermethrin degradation by a coculture of Bacillus cereus ZH-3 and Streptomyces aureus HP-S-01.Bioresource Technology,2012,110:97-104.