锡林河流域径流量变化对气候变化与人类活动的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of Runoff Volume Change to Climate Change and Human Activities in the Xilin River Basin
  • 作者:张艳霞 ; 于瑞宏 ; 薛浩 ; 多兰 ; 胡海珠 ; 吕喜玺
  • 英文作者:ZHANG Yan-xia;YU Rui-hong;XUE Hao;DUO Lan;HU Hai-zhu;LV Xi-xi;College of Ecology and Environment/Inner Mongolia Key Laboratory of River and Lake Ecology,Inner Mongolia University;Key Laboratory of Mongolian Plateau Ecology and Resources Utilization under Ministry of Education;
  • 关键词:径流量变化 ; 人类活动 ; 气候变化 ; 定量响应 ; 锡林河流域
  • 英文关键词:runoff volume;;human activity;;climate change;;quantitative response;;Xilin River Basin
  • 中文刊名:干旱区研究
  • 英文刊名:Arid Zone Research
  • 机构:内蒙古大学生态与环境学院内蒙古自治区河流与湖泊生态重点实验室;蒙古高原生态学与资源利用教育部重点实验室;
  • 出版日期:2019-01-09
  • 出版单位:干旱区研究
  • 年:2019
  • 期:01
  • 基金:国家重点研发计划项目(2016YFC0500508);; 国家自然科学基金项目(51469018,51609118)资助
  • 语种:中文;
  • 页:70-79
  • 页数:10
  • CN:65-1095/X
  • ISSN:1001-4675
  • 分类号:P333;P467
摘要
选取锡林河集水区域为研究区,基于1968—2015年水文和气象数据序列,采用Mann-Kendall趋势检验进行趋势分析,采用Mann-Kendall突变检验和双累积曲线法进行突变分析,继而利用双累积曲线法、累积量斜率变化率比较法及弹性分析法定量研究气候变化和人类活动对径流量影响的贡献率。研究表明:1968—2015年,锡林河流域年径流量呈显著下降趋势,且在1984年和2000年发生突变。基于此,将1968—1984年作为基准期、1985—2000年和2001—2015年则作为突变期;双累积曲线法得出的人类活动对径流影响贡献率介于86%~88%,与其他方法所得结果相差较大,而累积量变化率比较法则同时考虑降雨和蒸发对径流的影响,与弹性系数法得出的结果基本一致,贡献率分别介于52. 44%~69. 02%(1985—2000年)和42. 39%~43. 64%(2001—2015年)。综合而言,不同定量方法具有不同的基础和结构,使用包含多方法集成的弹性系数法相对于经验性统计法而言更可靠,且更适于锡林河流域径流量的定量响应研究。
        Study on the quantitative response of runoff volume to climate change and human activities can not only provide a theoretical basis for the redistribution of water resources in a drainage basin,but also a policy reference for the management of water resources. This study was based on the hydrological and meteorological data series in the Xilin River Basin,a typical grassland basin,during the period from 1968 to 2015,and the Mann-Kendall trend test was used to analyze the change trend of runoff volume. The Mann-Kendall mutation test and the double-accumulation curve method were also used. The contribution rates of climate change and human activities to the change of runoff volume were quantified using the double-accumulation curve method,cumulant slope rate comparison method and elasticity analysis method. The results showed that the annual runoff volume in the Xilin River Basin was in a significant decrease trend during the period from 1968 to 2015,and its mutations occurred in 1984 and 2000 respectively. On which the period of 1968-1984 was regarded as the reference period,and the periods of 1985-2000 and 2001-2015 were the mutation periods. The results from the double-accumulation curve method revealed that the contribution rate of human activities to runoff volume varied in a range of 86%-88%,which was quite different from the results obtained by other methods. The effects of both rainfall and evaporation on runoff volume were simultanously considered in the cumulant change rate comparison,so the results estimated by which and by the elasticity coefficient method were similar,and the contribution rates varied in ranges of 52. 44%-69. 02%( 1985-2000)and 42. 39%-43. 64%( 2001-2015) respectively. Holistically,the foundations and structures of different quantitative methods were different,the multiple methods were integrated in the elastic coefficient method,and this method was more reliable in quantifying the response of runoff volume in the Xilin River Basin.
引文
[1]王国庆,张建云,贺瑞敏.环境变化对黄河中游汾河径流情势的影响研究[J].水科学进展,2006,17(6):853-858.[Wang Guoqing,Zhang Jianyun,He Ruimin.Impacts of environmental change on runoff in Fenhe river basin of the middle Yellow River[J].Advances in Water Science,2006,17(6):853-858.]
    [2]Zhao G,Tian P,Mu X,et al.Quantifying the impact of climate variability and human activities on streamflow in the middle reaches of the Yellow River basin,China[J].Journal of Hydrology,2014,519(PA):387-398.
    [3]Ahn K H,Merwade V.Quantifying the relative impact of climate and human activities on streamflow[J].Journal of Hydrology,2014,515:257-266.
    [4]Zeng S,Xia J,Du H.Separating the effects of climate change and human activities on runoff over different time scales in the Zhang River basin[J].Stochastic Environmental Research&Risk Assessment,2014,28(2):401-413.
    [5]Wang S,Yan M,Yan Y,et al.Contributions of climate change and human activities to the changes in runoff increment in different sections of the Yellow River[J].Quaternary International,2012,282:66-77.
    [6]杨立哲,钱虹,郝璐.锡林河近50年径流变化特征及其影响因素分析[J].草业科学,2015,32(3):303-310.[Yang Lizhe,Qian Hong,Hao Lu.Analysis of runoff variations and impact factors in Xilinhe River Basin in recent 50 years[J].Pratacultural Science,2015,32(3):303-310.]
    [7]宋小园.气候变化和人类活动影响下锡林河流域水文过程响应研究[D].呼和浩特:内蒙古农业大学,2016.[Song Xiaoyuan.Effects of Climate Change and Human Activities on the Hydrological Processes of Xilinhe River[D].Hohhot:Inner Mongolia Agricultural University,2016.]
    [8]焦玮,朱仲元,宋小园,等.近50年气候和人类活动对锡林河流域径流的影响[J].中国水土保持科学,2015,13(6):12-19.[Jiao Wei,Zhu Zhongyuan,Song Xiaoyuan,et al.Impacts of climate change and human activities on runoff yield of the Xilin river basin over nearly 50 years[J].Science of Soil and Water Conservation,2015,13(6):12-19.]
    [9]焦玮.锡林河流域河川基流对气候变化与人类活动的响应特征研究[D].呼和浩特:内蒙古农业大学,2016.[Jiao Wei.Research on the River Base Flow for the Response Characteristics of the Climate Change and Human Activities in Xilin River Basin[D].Hohhot:Inner Mongolia Agricultural University,2016.]
    [10]段利民,李玮,刘廷玺,等.半干旱草原型流域径流变化特征及其影响因子定量分析[J].干旱区资源与环境,2017,31(10):125-130.[Duan Limin,Li Wei,Liu Tingxi,et al.Runoff variation and driven factors qualification for a semi-arid steppe watershed[J].Journal of Arid Land Resources and Environment,2017,31(10):125-130.]
    [11]刘浏,刘丽丽,索滢.近53 a黑河流域水文气象要素时空演变特征[J].干旱区研究,2017,34(3):465-478.[Liu Liu,Liu Lili,Suo Ying.Spatiotemporal evolution of hydro-meteorological variables in the Heihe river basin in recent 53 years[J].Arid Zone Research,2017,34(3):465-478.]
    [12]商沙沙,廉丽姝,马婷,等.近54 a中国西北地区气温和降水的时空变化特征[J].干旱区研究,2018,35(1):68-76.[Shang Shasha,Lian Lishu,Ma Ting,et al.Spatiotemporal variation of temperature and precipitation in Northwest China in recent 54 years[J].Arid Zone Research,2018,35(1):68-76.]
    [13]Mann H B.Nonparametric tests against trend[J].Econometrica,1945,13(3):245-259.
    [14]Kendall M G.Rank correlation methods[J].British Journal of Psychology,1955,25(1):86-91.
    [15]Sneyers R R.Sneyers-Sur l’analyse statistique des séries d’observations[J].Ciel Et Terre,1977,93:20-36
    [16]Sheng Yue,Paul Pilon.A comparison of the power of the t test,Mann-Kendall and bootstrap tests for trend detection/une comparaison de la puissance des tests t de Student,de Mann-Kendall et du bootstrap pour la dtection de tendance[J].International Association of Scientific Hydrology Bulletin,2004,49(1):21-37.
    [17]Searcy J K,Hardison C H.Double-Mass Curves[M].U.S.Geological Survey Water Supply Paper,1960:1 541-B.
    [18]穆兴民,张秀勤,高鹏,等.双累积曲线方法理论及在水文气象领域应用中应注意的问题[J].水文,2010,30(4):47-51.[Mu Xingmin,Zhang Xiuqin,Gao Peng,et al.Theory of double mass curves and the its applications in hydrology and meteorology[J].Journal of China Hydrology,2010,30(4):47-51.]
    [19]王随继,闫云霞,颜明,等.皇甫川流域降水和人类活动对径流量变化的贡献率分析---累积量斜率变化率比较方法的提出及应用[J].地理学报,2012,67(3):388-397.[Wang Suiji,Yan Yunxia,Yan Ming,et al.Contributions of precipition and human activities to the runoff change of the Huangfuchuan drainage basin:Application of comparative method of slope changing ratio of cumulative quantity[J].Acta Geographica Sinica,2012,67(3):388-397.]
    [20]Budyko M I.Climate and Life[M].San Diego:Academic,1974.
    [21]Ol’dekop E M.On evaporation from the surface of river basins[J].Transactions on Meteorological Observations University of Tartu,1911,4:200.
    [22]Budyko M I.Evaporation under Natural Conditions[M].Leningrad:Gidrometeorizdat,1948.
    [23]Pike J G.The estimation of annual run-off from meteorological data in a tropical climate[J].Journal of Hydrology,1964,2(2):116-123.
    [24]傅抱璞.论路面蒸发的计算[J].大气科学,1981,5(1):23-31.[Fu Baopu.On the calculation of the evaporation from land surface[J].Chinese Journal of Atmospheric Sciences,1981,5(1):23-31.]
    [25]Zhang L,Dawes W R,Walker G R.Response of mean annual evapotranspiration to vegetation changes at catchment scale[J].Water Resources Research,2001,37(3):701-708.
    [26]Wu J,Miao C,Zhang X,et al.Detecting the quantitative hydrological response to changes in climate and human activities[J].Science of the Total Environment,2017,586:328-337.
    [27]李玮,刘廷玺,格日乐吐,等.半干旱草原型流域不同时间尺度降水特征分析[J].干旱区地理,2017,40(2):304-312.[Li Wei,Liu Tingxi,Geriletu,et al.Precipitation characteristics at different time scales for a semi-arid steppe watershed[J].Arid Land Geography,2017,40(2):304-312.]
    [28]朱映新.苏州市降雨径流关系及下垫面变化对径流量影响研究[D].南京:河海大学,2007.[Zhu Yingxin.Modeling of Rainfall and Runoff Relationship and Estimation of Influence of Land Surface Change on Runoff in Suzhou[D].Nanjing:Hohai University,2007.]
    [29]高妍,冯起,李宗省,等.1957-2012年讨赖河流域降水变化特征[J].干旱区研究,2016,33(2):275-282.[Gao Wei,Feng Qi,Li Zongsheng,et al.Change of precipitation in the Taolaihe river basin for the period of 1957-2012[J].Arid Zone Research,2016,33(2):275-282.]
    [30]呼日乐,乌珠穆.锡盟落实草牧场双权一制技术应用及推广[J].内蒙古草业,1999(2):16-19.[Hurile,Wu Zhumu.Ximeng implements the application and promotion of dual-power system technology in grassland[J].Journal of Inner Mongolia Prataculture,1999(2):16-19.]
    [31]齐振华,杜赞炯.锡林浩特市锡林河流域水保大会战全面展开[J].水土保持通报,1999,19(5):6.[Qi Zhenhua,Du Zanjiong.The battle of the water conservation conference of Xilin River Basin in Xilinhot City[J].Bulletin of Soil and Water Conservation,1999,19(5):6.]