无机盐、激素与真菌联合诱导土沉香抗逆能力的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Resistance Capability of Aquilaria sinensis under Combinations of Inorganic Salts,Hormones and Fungus Induction
  • 作者:宋晓琛 ; 黄桂华 ; 王西洋 ; 宋杰 ; 张青青 ; 梁坤南 ; 周再知
  • 英文作者:SONG Xiao-Chen;HUANG Gui-Hua;WANG Xi-Yang;SONG Jie;ZHANG Qing-Qing;LIANG Kun-Nan;ZHOU Zai-Zhi;Research Institute of Tropical Forestry,CAF;Jiangxi Academy of Forestry;
  • 关键词:土沉香 ; 无机盐 ; 激素 ; 真菌 ; 联合诱导 ; 抗逆能力
  • 英文关键词:Aquilaria sinensis;;inorganic salts;;hormones;;fungus;;artificial induction;;resistance capability
  • 中文刊名:植物研究
  • 英文刊名:Bulletin of Botanical Research
  • 机构:中国林业科学研究院热带林业研究所;江西省林业科学院;
  • 出版日期:2019-07-15
  • 出版单位:植物研究
  • 年:2019
  • 期:04
  • 基金:广东省林业科技创新项目(2017KJCX001)~~
  • 语种:中文;
  • 页:27-35
  • 页数:9
  • CN:23-1480/S
  • ISSN:1673-5102
  • 分类号:S567.19
摘要
为了探究无机盐、激素与真菌联合诱导土沉香(Aquilaria sinensis)抗逆性及其与结香前期木芯变色长度之间的相关关系,以10年生土沉香为材料,采用均匀试验设计,开展了3种无机盐、3种激素及3种真菌组合试验。结果表明:(1)土沉香树体POD和SOD活性和MDA含量呈先升高后降低趋势,CAT活性在诱导后1天最高,随后呈下降趋势;(2)无机盐与真菌处理下土沉香的抗逆能力大于激素与真菌处理,其中无机盐与真菌组合试验的处理4(1. 0%CaCl_2+0. 5%FeSO_4+2. 0%NaCl+黑绿木霉:腐皮镰孢:龙眼焦腐(1:1:1))和激素与真菌组合试验的处理2(0. 01%茉莉酸甲酯+0. 1%乙烯利+0. 2%水杨酸钠+黑绿木霉:腐皮镰孢:龙眼焦腐(1:1:1))分别为同类处理最高;(3)土沉香抗逆能力高低与木芯变色长度存在显著正相关性;(4)理论上,土沉香抗逆能力最强诱导组合分别为0. 93%CaCl_2+0. 53%FeSO_4+2. 5%NaCl+黑绿木霉:腐皮镰孢:龙眼焦腐(1:1:1)和0. 005%茉莉酸甲酯+0. 006%乙烯利+0. 2%水杨酸钠+黑绿木霉:腐皮镰孢:龙眼焦腐(1:1:1)。
        We explored the effect of different combinations of inorganic salts hormones and fungus induction on resistance capability of Aquilaria sinensis and the relationship between resistance and discoloration length of wood core in early stage of agarwood. Two induction experiments bydifferent combination of 3 kinds of inorganic salts,3 hormones and 3 fungi were carried out for ten-years-old trees of A. sinensis by uniform experimental design. The results showed that:( 1) POD and SOD activity and MDA content firstly increased and then decreased; CAT activity reached the highest value at 1 day after induction,and then decreased;( 2) The resistance capability under combinations of inorganic salts and fungus induction was greater than that of hormones and fungus. The capability in treatment 4( 1. 0% CaCl_2+ 0. 5% FeSO_4+ 2. 0% NaCl + Trichoderma atroviride:Fusarium solani: Lasiodiplodia theobromae( 1 :1 :1)) from combinations of inorganic salts and fungus and treatment 2( 0. 01% Methyl Jasmonate + 0. 1% Ethephon + 0. 2% Sodium salicylate + Trichoderma atroviride: Fusarium solani:Lasiodiplodia theobromae( 1:1:1)) from combinations of hormones and fungus was higher in the experiments respectively;( 3) There was a significant positive correlation between the resistance capability of A. sinensis and the length of wood core discoloration;( 4) Theoretically,0. 93% CaCl_2+0. 53% FeSO_4+ 2. 5% NaCl + Trichoderma atroviride: Fusarium solani: Lasiodiplodia theobromae( 1:1:1) and 0. 005% Methyl Jasmonate + 0. 006% Ethephon + 0. 2% Sodium salicylate + Trichoderma atroviride: Fusarium solani:Lasiodiplodia theobromae( 1:1:1) was combination with the highest resistance ability respectively.
引文
1.中国科学院中国植物志编辑委员会.中国植物志[M].北京:科学出版社,1999:290-291.Editorial Board of Chinese Botany Chinese Academy of Sciences. Flora of China[M]. Beijing:Science Press,1999:290-291.
    2 .张争,杨云,魏建和,等.白木香结香机制研究进展及其防御反应诱导结香假说[J].中草药,2010,41(1):156-159.Zhang Z,Yang Y,Wei J H,et al. Advances in studies on mechanism of agarwood formation in Aquilaria sinensis and its hypothesis of agarwood formation induced by defense response[J]. Chinese Traditional and Herbal Drugs,2010,41(1):156-159.
    3 . Wojtaszek P. Oxidative burst:an early plant response to pathogen infection[J]. Biochemical Journal,1997,322(3):681-692.
    4 .辛松林,秦文,孙传红,等.腐皮镰孢霉菌侵染及保鲜剂处理对秋葵相关抗性酶的影响[J].江苏农业学报,2018,34(5):1161-1168.Xin S L,Qin W,Sun C H,et al. Effects of Fusarium solani infection and preservative treatment on resistance associated enzyme from okra[J]. Jiangsu Journal of Agricultural Science,2018,34(5):1161-1168.
    5 . Deinlein U,Stephan A B,Horie T,et al. Plant salt-tolerance mechanisms[J]. Trends in Plant Science,2014,19(6):371-379.
    6 .刘威,袁晓婷,张艳艳,等.胭脂红景天引种至西藏日喀则其渗透调节物质及保护酶活性的变化[J].植物研究,2013,33(6):697-700.Liu W,Yuan X T,Zhang Y Y,et al. Changes of osmotic adjustment substances and activities of protective enzymes in Sedum spurium ‘Coccineum’introduced to Xigaze,Tibet[J]. Bulletin of Botanical Research,2013,33(6):697-700.
    7 .张兴丽.伤害诱导的白木香防御反应与沉香形成的关系研究[D].北京:北京林业大学,2013.Zhang X L. Studies on relationships between wound-induced defense response and agarwood formation in Aquilaria sinensis[D]. Beijing:Beijing Forestry University,2013.
    8 .王东光.白木香结香促进技术研究[D].北京:中国林业科学研究院,2016.Wang D G. Study on agarwood-induced technique of Aquilaria sinensis[D]. Beijing:Chinese Academy of Forestry,2016.
    9 .王东光,张宁南,杨曾奖,等.人工诱导白木香树体抗逆能力的研究[J].华南农业大学学报,2016,37(6):70-76.Wang D G,Zhang N N,Yang Z J,et al. Study on resistance ability of Aquilaria sinensis trees under artificial induction[J]. Journal of South China Agricultural University,2016,37(6):70-76.
    10 . Hillis W E. Chemical aspects of heartwood formation[J].Wood Science and Technology,1968,2(4):241-259.
    11 . Onuorah E O. Relative efficacy of heartwood extracts and proprietory wood preservatives as wood protectants[J].Journal of Forestry Research,2002,13(3):183-190.
    12 . Mohamed R,Jong P L,Irdayu I N. Succession patterns of fungi associated to wound-induced agarwood in wild Aquilaria malaccensis revealed from quantitative PCR assay[J]. World Journal of Microbiology and Biotechnology,2014,30(9):2427-2436.
    13 .王小菲,高文强,刘建锋,等.植物防御策略及其环境驱动机制[J].生态学杂志,2015,34(12):3542-3552.Wang X F,Gao W Q,Liu J F,et al. Plant defensive strategies and environment-driven mechanisms[J]. Chinese Journal of Ecology,2015,34(12):3542-3552.
    14 . Giannopolitis C N,Ries S K. Superoxide dismutase:Ⅰ. occurrence in higher plants[J]. Plant Physiology,1977,59(2):309-314.
    15 .张志良,瞿伟菁,李小方.植物生理学实验指导:4版[M].北京:高等教育出版社,2009.Zhang Z L,Qu W J,Li X F. Plant physiology experimental guidance:4th ed[M]. Beijing:Higher Education Press,2009.
    16 . Dhindsa R S,Pamela Plumb-Dhindsa P,Thorpe T A. Leaf senescence:correlated with increased levels of membrane permeability and lipid peroxidation,and decreased levels of superoxide dismutase and catalase[J]. Journal of Experimental Botany,1981,32(126):93-101.
    17 .王谧,王芳,王舰.应用隶属函数法对马铃薯进行抗旱性综合评价[J].云南农业大学学报,2014,29(4):476-481.Wang M,Wang F,Wang J. Evaluation of potato drought resistance by subordinate function[J]. Journal of Yunnan Agricultural University,2014,29(4):476-481.
    18 . Mittler R,Vanderauwera S,Suzuki N,et al. ROS signaling:the new wave?[J]. Trends in Plant Science,2011,16(6):300-309.
    19 . Suzuki N,Miller G,Morales J,et al. Respiratory burst oxidases:the engines of ROS signaling[J]. Current Opinion in Plant Biology,2011,14(6):691-699.
    20 .郭盈天,张泽,付强,等.高温胁迫对金露梅叶片结构和生理代谢的影响[J].北方园艺,2018,23:83-98.Guo Y T,Zhang Z,Fu Q,et al. Effects of high temperature stress on leaf structures and physiogical metabolism of Potentilla fruticosa L.[J]. Northern Horticulture,2018,23:93-98.
    21 . Gill S S,Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J].Plant Physiology and Biochemistry,2010,48(12):909-930.
    22 .李晶,阎秀峰,祖元刚.低温胁迫下红松幼苗活性氧的产生及保护酶的变化[J].植物学报,2000,42(2):148-152.Li J,Yan X F,Zu Y G. Generation of activated oxygen and change of cell defense enzyme activity in leaves of Korean Pine seedling under low temperature[J]. Acta Botanica Sinica,2000,42(2):148-152.
    23 .时丽冉,白丽荣,吕亚慈,等.小麦杂交品种衡9966苗期耐盐性分析[J].作物杂志,2018,(6):149-153.Shi L R,Bai L R,LüY C,et al. Analysis of salt tolerance at the seedling stage of wheat hybrid variety Heng 9966[J]. Crops,2018,(6):149-153.
    24 . Zhao J,Davis L C,Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites[J].Biotechnology Advances,2005,23(4):283-333.
    25 . O’donnell P J,Calvert C,Atzorn R,et al. Ethylene as a signal mediating the wound response of tomato plants[J].Science,1996,274(5294):1914-1917.
    26 . Avanci N C,Luche D D,Goldman G H,et al. Jasmonates are phytohormones with multiple functions,including plant defense and reproduction[J]. Genetics and Molecular Research,2010,9(1):484-505.
    27 .刘艳艳,萧凤回. JAs、SAs介导的植物防御反应及在药用植物中的应用[J].中国农学通报,2010,26(14):98-100.Liu Y Y,Xiao F H. Jasmonate and Salicylate-mediated plant defense responses and their application in medicinal plants[J]. Chinese Agricultural Science Bulletin,2010,26(14):98-100.
    28 .陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学通讯,1991,27(2):84-90.Chen S Y. Injury of membrane lipid peroxidation to plant cell[J]. Plant Physiology Communication,1991,27(2):84-90.
    29 .刘晓英,焦学磊,徐志刚,等.不同红蓝LED光照强度对樱桃番茄幼苗生长和抗氧化酶活性的影响[J].南京农业大学学报,2015,38(5):772-779.Liu X Y,Jiao X L,Xu Z G,et al. Effects of different red and blue LED light intensity on growth and antioxidant enzyme activity of cherry tomato seedlings[J]. Journal of Nanjing Agricultural University,2015,38(5):772-779.
    30 . Lindquist S,Craig E A. The heat-shock proteins[J]. Annual Review of Genetics,1988,22(1):631-677.
    31 . Rajput V D,Chen Y,Ayup M. Effects of high salinity on physiological and anatomical indices in the early stages of Populus euphratica growth[J]. Russian Journal of Plant Physiology,2015,62(2):229-236.
    32 .徐维娜.真菌侵染诱导沉香形成关键技术效果评价及结香机制初步研究[D].广州:广东药学院,2011,9.Xu W N. Evaluation on key technology of fungi infectioninduced aloes-forming effect and preliminary research on the mechanism of the eaglewood formation[D]. Guangzhou:Guangdong Pharmaceutical University,2011,9.
    33 .崔之益,徐大平,杨曾奖,等.心材形成机理与人工促进研究进展[J].世界林业研究,2016,29(6):33-37.Cui Z Y,Xu D P,Yang Z J,et al. A review of mechanism and artificial promotion of heartwood formation[J]. World Forestry Research,2016,29(6):33-37.
    34 . Ziegler H. Biologische aspekte der kernholzbildung[J].Holz als Roh-und Werkstoff,1968,26(2):61-68.
    35 .诸葛强,黄敏仁,潘惠新,等.杨树湿心材的化学特性及形成机理研究[J].林业科学,1997,33(3):259-266.Zhu G Q,Huang M R,Pan H X,et al. Study on chemical characteristics and formation mechanism of poplar wetheartwood[J]. Scientia Silvae Sinicae,1997,33(3):259-266.