淮北平原气象因素对裸地潜水蒸发的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Metrological Factors Affecting Evaporation of Shallow Groundwater in the Absence of Plants in Huaibei Plain
  • 作者:陆小明 ; 杨秒 ; 王振龙 ; 吕海深 ; 顾南
  • 英文作者:LU Xiaoming;YANG Miao;WANG Zhenlong;LYU Haishen;GU Nan;Jiangsu Province Hydrology and Water Resources Investigation Bureau;Hohai University;Water Resources Research Institute of Anhui Province;
  • 关键词:潜水蒸发 ; 气象因素 ; 地温 ; 裸地 ; 淮北平原
  • 英文关键词:phreatic evaporation;;meteorological factors;;soil temperature;;bare land;;Hubei plain
  • 中文刊名:灌溉排水学报
  • 英文刊名:Journal of Irrigation and Drainage
  • 机构:江苏省水文水资源勘测局;河海大学;安徽省(水利部淮委)水利科学研究院;
  • 出版日期:2019-04-15
  • 出版单位:灌溉排水学报
  • 年:2019
  • 期:04
  • 基金:国家重点研发计划课题(2017YFC0404504)
  • 语种:中文;
  • 页:86-93
  • 页数:8
  • CN:41-1337/S
  • ISSN:1672-3317
  • 分类号:S152.7
摘要
【目的】理清气象因素对潜水蒸发的影响。【方法】采用五道沟水文实验站62套原状土蒸渗仪及气象场1991─2015年长系列实验资料,分析了潜水蒸发与水面蒸发、气温、降雨及地温的关系,并比较了气象因素对砂姜黑土与黄潮土潜水蒸发量影响的差异。【结果】砂姜黑土与黄潮土地下水埋深为0时的潜水蒸发均比水面蒸发小,且都与水面蒸发呈线性相关关系(R~2>0.9)。潜水蒸发与气温年内变化趋势基本一致,气温对砂姜黑土在地下水埋深小于0.2 m影响较大,大于0.4 m影响较小;对黄潮土在地下水埋深小于1.0 m影响较大,大于2.0 m影响较小。地温是潜水蒸发的能量来源之一,5—8月,潜水蒸发随地温的增加而增大;11月—次年2月,潜水蒸发随地温的增加而减小,而3、4月和9、10月处于转折阶段,规律性不明显。对多年平均月潜水蒸发与地温进行曲线拟合,采用高斯曲线拟合最好(R~2均大于0.9)。【结论】气象因素对地下水埋深浅的潜水蒸发影响明显,且对黄潮土的影响大于砂姜黑土,可用地温计算潜水蒸发。
        【Objective】Groundwater evaporation is a main process in hydrological cycle, and the objective of this paper is to unveil the main metrological factors that profoundly impact shallow groundwater evaporation in the absence of plants.【Method】The experiment was conducted in 62 lysimeters filled with intact fluvo-aquaic soil and lime concretion black soil respectively. Data measured from 1991 to 2015 were used to analyze groundwater evaporation in response to surface water evaporation, ground-surface temperature and rainfall, from which we identified the most influential factors.【Result】Groundwater evaporation from both soils was proportional to surface water evaporation with R~2>0.9, and was closely related to intra-annual temperature fluctuation. For groundwater in the lime concretion black soil, the impact of temperature on its evaporation was significant when groundwater table was shallower than 0.2 m depth and became less noticeable when groundwater table dropped to 0.4 m deep. For fluvo-aquaic soil, the temperature had considerable impact when the depth of groundwater table was above 1.0 m and the impact decreased as groundwater table dropped to 2.0 m deep. From May to August, the evaporation increased with ground-surface temperature, while during the following November to February it decreased as ground-surface temperature increased. March, April, September and October were turning points during which there was no close relationship between ground-surface temperature and groundwater evaporation.Both monthly average groundwater evaporation and ground-surface temperature were normally distributed with R~2 being 0.9.【Conclusion】Groundwater evaporation from the fluvo-aquic soil was affected by meteorological factors more than from the lime concretion black soil, and for both soils it was closely related to the ground-surface temperature.
引文
[1]束龙仓,荆艳东,黄修东,等.改进的无作物潜水蒸发经验公式[J].吉林大学学报(地球科学版),2012,42(6):1 859-1 865.
    [2]贾瑞亮,周金龙,高业新,等.干旱区高盐度潜水蒸发规律初步分析[J].水科学进展,2015,26(1):44-50.
    [3]王思如,雷慧闽,段利民,等.气候变化对科尔沁沙地蒸散发和植被的影响[J].水利学报,2017,48(5):535-544,555.
    [4]王振龙,刘淼,李瑞.淮北平原有无作物生长条件下潜水蒸发规律试验[J].农业工程学报,2009,25(6):26-32.
    [5]MIKE Hulme,ZHAO Zongci,JIANG Tao.Recent and future climate change in east asia[J].International Journal of Climatology,1994,14(6):637-658.
    [6]COHEN S,IANETZ A,STANHILL G.Evaporative climate changes at bet dagan,israel,1964-1998[J].Agricultural and Forest Meteorology,2002,111(2):83-91.
    [7]GONG Lebing,XU Chongyu,CHEN Deliang,et al.Sensitivity of the Penman-Monteith reference evapotranspiration to key climatic variables in the Changjiang(Yangtze River)basin[J].Journal of Hydrology,2006,329(3):620-629.
    [8]YANG Mingdi,YANFUL E K.Water balance during evaporation and drainage in cover soils under different water table conditions[J].Advances in Environmental Research,2002,6(4):505-521.
    [9]UNOLD G,FANK J.Modular design of field lysimeters for specific application needs[J].Water,Air,&Soil Pollution:Focus,2008,8(2):233-242.
    [10]夏自强.温度变化对土壤水运动影响研究[J].地球信息科学,2001(4):19-24.
    [11]贾云茂.不同地下水埋深条件下农田潜水蒸发试验研究[J].灌溉排水学报,2008,27(6):71-73.
    [12]郝振纯,陈玺,王加虎,等.淮北平原裸土潜水蒸发趋势及其影响因素分析[J].农业工程学报,2011,27(6):73-78.
    [13]于海龙,姜峰,苏浩.气象因素对潜水蒸发影响探讨[J].水土保持应用技术,2011(3):24-25.
    [14]苏婷婷,白燕英,魏占民.土默特右旗ET0对气象因子和相关参数的响应[J].灌溉排水学报,2018,37(3):110-114.
    [15]刘路广,崔远来,冯跃华.引黄灌区潜水蒸发规律与计算方法研究[J].灌溉排水学报,2011,30(3):18-22,33.
    [16]杨艳鲜,张丹,雷宝坤,等.洱海近岸菜地浅层地下水动态变化特征及影响因素[J].灌溉排水学报,2017,36(12):101-109.
    [17]韩艳丽,李凤萍.插值与曲线拟合[J].中国西部科技,2009,8(11):91-92.
    [18]唐冲,惠辉辉.基于Matlab的高斯曲线拟合求解[J].计算机与数字工程,2013,41(8):1 262-1 263,1 297.
    [19]李飞.地温对非胁迫潜水蒸发影响研究[D].合肥:合肥工业大学,2016.
    [20]胡顺军,宋郁东,田长彦,等.潜水埋深为零时塔里木盆地不同土质潜水蒸发与水面蒸发关系分析[J].农业工程学报,2005,21(1):80-83.