用户名: 密码: 验证码:
不同品种辣椒镉亚细胞分布和化学形态特征差异
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Differences in the Cadmium-Enrichment Capacity and Subcellular Distribution and Chemical Form of Cadmium in Different Varieties of Pepper
  • 作者:彭秋 ; 李桃 ; 徐卫红 ; 焦璐琛 ; 邓继宝
  • 英文作者:PENG Qiu;LI Tao;XU Wei-hong;JIAO Lu-chen;DENG Ji-bao;College of Resources and Environmental Sciences,Southwest University;
  • 关键词: ; 辣椒 ; 亚细胞分布 ; 转移系数 ; Cd化学形态
  • 英文关键词:cadmium;;pepper;;subcellular distribution;;migration coefficient;;Cd chemical form
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:西南大学资源与环境学院;
  • 出版日期:2019-02-25 17:04
  • 出版单位:环境科学
  • 年:2019
  • 期:07
  • 基金:现代农业产业技术体系建设专项(CARS-23);; 国家科技支撑计划项目(2007BAD87B10);; 国家重点研发计划项目(2018YFD0201200)
  • 语种:中文;
  • 页:389-396
  • 页数:8
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X173
摘要
前期试验对91个辣椒品种资源进行筛选,以高积Cd型品种(X55)、中积Cd型品种(27)和低积Cd型品种(17)各一份,采用盆栽试验研究不同镉水平(0、5和10 mg·kg-1Cd)下3个品种辣椒Cd转移和富集能力差异以及镉在果实中亚细胞分布和形态特征.结果表明,Cd胁迫下,辣椒地上部干重在种间表现为品种X55> 17> 27.果实Cd转移系数在同一Cd水平下均表现为品种17> 27或X55.辣椒果实各亚细胞组分中Cd含量在种间表现为品种27> 17> X55.辣椒根、茎、叶和果各亚细胞组分中Cd含量均表现为细胞壁(F1)>细胞器(F2)>细胞可溶性组分(F3),Cd被限制在细胞壁中,在辣椒Cd解毒机制和抗性中起重要作用. 3个品种辣椒果实各Cd化学形态含量随Cd处理水平的增加而增加,且大小均表现为CdNaCl>CdHAC> CdR> CdHCl> CdW> CdE.辣椒果实中的CdNaCl和CdHAC占比例较大可能是辣椒降低Cd生物毒性的一种防御机制.
        In a preliminary experiment,91 pepper varieties were screened,and one variety each with high Cd accumulation( X55),medium Cd accumulation( Daguo 99),and low Cd accumulation( Luojiao 318) were selected to study the effect of different cadmium levels( 0,5,and 10 mg·kg-1 Cd) on cadmium migration and enrichment ability,and its subcellular distribution and chemical form.The results showed that under the stress of Cd,shoot dry weight of pepper plants was in the order X55 > 17 > 27. At the same level of Cd,the Cd transfer coefficient of fruit was 17 > 27 and X55. Cadmium concentrations in each subcellular component of the pepper fruits were 27 > 17 > X55. Cadmium concentration in subcellular component of the roots,stems,leaves,and fruits of the pepper plants was in order of cell wall( F1) > organelle( F2) > cell soluble component( F3). Cadmium was limited in cell wall and plays an important role in detoxification mechanism and resistance of Cd in pepper plants. The morphological content of various Cd forms in the pepper fruits of the three varieties increased with the increase of Cd treatment level,in the order CdNaCl> CdHAC> CdR> CdHCl> CdW>CdE. CdNaCland CdHACaccount for a large proportion of Cd in pepper fruits,which may be an important defense mechanism for reducing the biological toxicity of Cd.
引文
[1]崔力拓,耿世刚,李志伟.我国农田土壤镉污染现状及防治对策[J].现代农业科技,2006,(11):184-185.
    [2] Jiang Y X,Chao S H,Liu J W,et al. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province,China[J]. Chemosphere,2017,168:1658-1668.
    [3]詹杰,魏树和,牛荣成.我国稻田土壤镉污染现状及安全生产新措施[J].农业环境科学学报,2012,31(7):1257-1263.Zhan J,Wei S H,Niu R C. Advances of cadmium contaminated paddy soil research and new measure of its safe production in China:A Review[J]. Journal of Agro-Environment Sciences,2012,31(7):1257-1263.
    [4]王大州,林剑,王大霞,等.根际土-辣椒系统中重金属的分布及食物安全风险评价[J].地球与环境,2014,42(4):546-549.Wang D Z,Lin J,Wang D X,et al. Distribution of heavy metals in the rhizospheric soil-capsicum system and risk assessment[J].Earth and Environment,2014,42(4):546-549.
    [5]宋波,高定,陈同斌,等.北京市菜地土壤和蔬菜铬含量及其健康风险评估[J].环境科学学报,2006,26(10):1707-1715.Song B, Gao D, Chen T B, et al. A survey of chromium concentrations in vegetables and soils in Beijing and the potential risks to human health[J]. Acta Scientiae Circumstantiae,2006,26(10):1707-1715.
    [6]姚春霞,陈振楼,张菊,等.上海市浦东新区土壤及蔬菜重金属现状调查及评价[J].土壤通报,2005,36(6):884-887.Yao C X,Chen Z L,Zhang J,et al. Heavy metal contents and evaluation of vegetable and soil in Pudong,Shanghai City[J].Chinese Journal of Soil Science,2005,36(6):884-887.
    [7] Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis[J]. Planta,2001,212(4):475-486.
    [8]韦月越,蒙敏,黄雪芬,等.桉树对矿区污染土壤中Cu和Cd的耐受机制[J].基因组学与应用生物学,2016,35(1):227-234.Wei Y Y,Meng M,Huang X F,et al. Tolerance mechanisms of Cu and Cd by eucalyptus in mine contaminated soil[J].Genomics and Applied Biology,2016,35(1):227-234.
    [9] Fu X P,Dou C M,Chen Y X,et al. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L.[J].Journal of Hazardous Materials,2011,186(1):103-107.
    [10] Wu F B,Dong J,Qian Q Q,et al. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes[J]. Chemosphere,2005,60(10):1437-1446.
    [11] Wang P,Deng X J,Huang Y,et al. Comparison of subcellular distribution and chemical forms of cadmium among four soybean cultivars at young seedlings[J]. Environmental Science and Pollution Research,2015,22(24):19584-19595.
    [12] Rao N K S,Shivashankara K S,Laxman R H. Abiotic stress physiology of horticultural crops[M]. New Delhi:Springer,2016. 85-102.
    [13]陈贵青,张晓璟,徐卫红,等.不同Zn水平下辣椒体内Cd的积累、化学形态及生理特性[J].环境科学,2010,31(7):1657-1662.Chen G Q,Zhang X J,Xu W H,et al. Effect of different zinc levels on accumulation and chemical forms of cadmium, and physiological characterization in Capsicum annuum L.[J].Environment Science,2010,31(7):1657-1662.
    [14]王友保,张莉,沈章军,等.铜尾矿库区土壤与植物中重金属形态分析[J].应用生态学报,2005,16(12):2418-2422.Wang Y B,Zhang L,Shen Z J,et al. Chemical forms of heavy metals in the soils and plants of copper tailings yard[J]. Chinese Journal of Applied Ecology,2005,16(12):2418-2422.
    [15]付玉辉. Cd、Pb低积累蔬菜品种筛选与修复技术研究[D].杭州:浙江大学,2016.
    [16]孙园园,关萍,何杉,等.镉胁迫对多花黑麦草镉积累特征、生理抗性及超微结构的影响[J].草业科学,2016,33(8):1589-1597.Sun Y Y,Guan P,He S,et al. Effects of Cd stress on Cd accumulation,physiological response and ultrastructure of lolium multiflorum[J]. Pratacultural Science,2016,33(8):1589-1597.
    [17]冯鹏,孙力,申晓慧,等.多年生黑麦草对Pb、Cd胁迫的响应及富集能力研究[J].草业学报,2016,25(1):153-162.Feng P,Sun L,Shen X H,et al. Response and enrichment ability of perennial ryegrass under lead and cadmium stress[J].Acta Prataculturae Sinica,2016,25(1):153-162.
    [18]赵明柳,唐守寅,董海霞,等.硅酸钠对重金属污染土壤性质和水稻吸收Cd Pb Zn的影响[J].农业环境科学学报,2016,35(9):1653-1659.Zhao M L,Tang S Y,Dong H X,et al. Effects of sodium silicate on soil properties and Cd,Pb and Zn absorption by rice plant[J]. Journal of Agro-Environment Science,2016,35(9):1653-1659.
    [19] Weigel H J,Jger H J. Subcellular distribution and chemical form of cadmium in bean plants[J]. Plant Physiology,1980,65(3):480-482.
    [20] Khaliq A,Ali S,Hameed A,et al. Silicon alleviates nickel toxicity in cotton seedlings through enhancing growth,photosynthesis,and suppressing Ni uptake and oxidative stress[J]. Archives of Agronomy and Soil Science,2015,62(5):633-647.
    [21] Barzanti R,Colzi I,Arnetoli M,et al. Cadmium phytoextraction potential of different Alyssum species[J]. Journal of Hazardous Materials,2011,196:66-72.
    [22] Xin J L,Huang B F,Dai H W,et al. Roles of rhizosphere and root-derived organic acids in Cd accumulation by two hot pepper cultivars[J]. Environmental Science and Pollution Research,2015,22(8):6254-6261.
    [23] Xu Z M,Tan X Q,Mei X Q,et al. Low-Cd tomato cultivars(Solanum lycopersicum L.)screened in non-saline soils also accumulated low Cd,Zn,and Cu in heavy metal-polluted saline soils[J]. Environmental Science and Pollution Research,2018,25(27):27439-27450.
    [24] Rea P A. Phytochelatin synthase:of a protease a peptide polymerase made[J]. Physiologia Plantarum,2012,145(1):154-164.
    [25] Clemens S. Evolution and function of phytochelatin synthases[J]. Journal of Plant Physiology,2006,163(3):319-332.
    [26] Xue M,Zhou Y H,Yang Z Y,et al. Comparisons in subcellular and biochemical behaviors of cadmium between low-Cd and highCd accumulation cultivars of pakchoi(Brassica chinensis L.)[J]. Frontiers of Environmental Science&Engineering,2014,8(2):226-238.
    [27] Tong Y P,Kneer R,Zhu Y G. Vacuolar compartmentalization:a second-generation approach to engineering plants for phytoremediation[J]. Trends in Plant Science,2004,9(1):7-9.
    [28] Weng B,Xie X Y,Weiss D J,et al. Kandelia obovata(S.,L.)Yong tolerance mechanisms to Cadmium:Subcellular distribution,chemical forms and thiol pools[J]. Marine Pollution Bulletin,2012,64(11):2453-2460.
    [29] Xu P X,Wang Z L. Physiological mechanism of hypertolerance of cadmium in Kentucky bluegrass and tall fescue:Chemical forms and tissue distribution[J]. Environmental and Experimental Botany,2013,96:35-42.
    [30] Wei S H,Zeng X F,Wang S H,et al. Hyperaccumulative property of Solanum nigrum L. to Cd explored from cell membrane permeability,subcellular distribution,and chemical form[J]. Journal of Soils and Sediments,2014,14(3):558-566.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700