用户名: 密码: 验证码:
向家坝水库营养盐时空分布特征及滞留效应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial and Temporal Distribution Characteristics and the Retention Effects of Nutrients in Xiangjiaba Reservoir
  • 作者:王耀耀 ; 吕林鹏 ; 纪道斌 ; 方海涛 ; 朱晓声 ; 张庆文 ; 霍静 ; 何金艳
  • 英文作者:WANG Yao-yao;Lü Lin-peng;JI Dao-bin;FANG Hai-tao;ZHU Xiao-sheng;ZHANG Qing-wen;HUO Jing;HE Jin-yan;College of Hydraulic & Environmental Engineering,China Three Gorges University;Investment in Fiscal and Economic Development Corporation Limited in Yichang;
  • 关键词:向家坝水库 ; 营养盐 ; 滞留效应 ; 反硝化作用 ; 水库运行周期
  • 英文关键词:Xiangjiaba Reservoir;;nutrient;;retention efficiency;;denitrification;;reservoir operating period
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:三峡大学水利与环境学院;宜昌市财政经济开发投资有限公司;
  • 出版日期:2019-03-26 15:25
  • 出版单位:环境科学
  • 年:2019
  • 期:08
  • 基金:国家重点研发计划项目(2016YFC0402204);; 国家自然科学基金重大计划项目(91647207);国家自然科学基金项目(51779128,51509086,41501297);; 国家国际科技合作项目(2014DFE70070);; 国家水体污染控制与治理科技重大专项(2014ZX07104-005-02)
  • 语种:中文;
  • 页:136-144
  • 页数:9
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X524
摘要
向家坝建库后改变了河流原有的水动力、营养盐分布及输移条件.为研究向家坝水库营养盐分布特征及滞留效应,通过2015~2016年分季度水库水质监测结果,分析向家坝水库水体总氮(TN)、总磷(TP)和溶解性硅(SiO_3~(2-)-Si)营养盐时空分布特征、滞留量、滞留效率.研究发现,向家坝水库TN、TP和SiO_3~(2-)-Si营养盐质量浓度均值分别为0. 905、0. 034和7. 98mg·L~(-1).其中,TN质量浓度在城镇人口密集区偏大,分布主要受点源影响;磷营养盐以颗粒态磷为主,TP质量浓度在水库中自上而下沿程降低,SiO_3~(2-)-Si质量浓度分布在时空上差异较小.向家坝对TN、TP和SiO_3~(2-)-Si营养盐滞留量为2. 30×10~4、0. 146×10~4和-2. 4×10~4t·a~(-1).在不同季度,TN和SiO_3~(2-)-Si滞留量有正有负,而TP则始终表现为正滞留. TN、TP和SiO_3~(2-)-Si月平均滞留效率分别为17. 5%、32. 8%和-2. 14%.整体上实际滞留效率表现为丰水期高于枯水期,并且TP的滞留作用更为显著. TN滞留量主要受反硝化作用,以及外源负荷输入影响; SiO_3~(2-)-Si输送通量主要受径流量影响;水库运行周期以及磷的颗粒形态则是TP滞留的主要因素.向家坝水库对营养盐的滞留效应与TN和SiO_3~(2-)-Si质量浓度变化无明显相关性,而水库对TP的滞留效应使TP质量浓度在水库纵向上沿程减小,在各监测样点垂向水深上TP质量浓度则有增大的趋势.
        After the construction of the Xiangjiaba Dam,the hydrodynamic conditions,nutrient distributions,and transport conditions of the Jinsha River were changed. Here,the nutrient distribution characteristics and retention effects of Xiangjiaba Reservoir were investigated according to the results of water quality monitoring from 2015 to 2016. Spatial and temporal variations in TN,TP,SiO_3~(2-)-Si,and other nutrients,and retention flux and retention rate were analyzed. The results showed that the nutrient mass concentration of TN,TP,and SiO_3~(2-)-Si was 0. 905 mg·L~(-1),0. 034 mg·L~(-1),and 7. 98 mg·L~(-1),respectively. The distribution of TN was affected by point sources and the concentration of TN was large in urban areas. This distribution of TP was mainly granular and the mass concentrations decreased along the river path. The mass concentration of SiO_3~(2-)-Si did not significantly vary over time and space.Furthermore,Xiangjiaba Reservoir had a persistent effect on nutrient salts; the average annual retention of TN,TP,and SiO_3~(2-)-Si was2. 30 × 10~4 t·a~(-1),0. 146 × 10~4 t·a~(-1),and-2. 4 × 10~4 t·a~(-1),respectively. During different seasons,the retention of TN and SiO_3~(2-)-Si varied between positive or negative; however,TP appeared to be consistent. The average monthly retention efficiency of TN,TP,and SiO_3~(2-)-Si was 17. 5%,32. 8%,and-2. 14%,respectively. Overall,retention efficiencies were higher during the dry season than that wet season,and phosphorus retention was most pronounced. The retention of TN in the reservoir may be related to denitrification and the input of external load; the flux of SiO_3~(2-)-Si was mainly affected by runoff; and the particle morphology of phosphorus,as well as reservoir period,were the main factors affecting TP retention. There were no clear correlations between nutrient retention and the mass concentrations of TN and SiO_3~(2-)-Si,but the nutrient retention effect of Xiangjiaba Reservoir reduced TP concentrations along the river path and increased TP concentration with vertical depth.
引文
[1]López-Tarazón J A,López P,Lobera G,et al.Suspended sediment,carbon and nitrogen transport in a regulated Pyrenean river[J].Science of the Total Environment,2016,540:133-143.
    [2]Brown J B,Sprague L A,Dupree J A.Nutrient sources and transport in the missouri river basin,with emphasis on the effects of irrigation and reservoirs[J].Journal of the American Water Resources Association,2011,47(5):1034-1060.
    [3]David M B,Wall LG,Royer T V,et al.Denitrification and the nitrogen budget of a reservoir in an agricultural landscape[J].Ecological Applications,2006,16(6):2177-2190.
    [4]刘志迎,许海,詹旭,等.蓝藻水华对太湖水柱反硝化作用的影响[J].环境科学,2019,40(3):1261-1269.Liu Z Y,Xu H,Zhan X,et al.Influence of Cyanobacterial blooms on denitrification rate in shallow lake Taihu,China[J].Environmental Science,2019,40(3):1261-1269.
    [5]Choudhury M I,Mc Kie B G,Hallin S,et al.Mixtures of macrophyte growth forms promote nitrogen cycling in wetlands[J].Science of the Total Environment,2018,635:1436-1443.
    [6]Howarth R W,Billen G,Swaney D,et al.Regional nitrogen budgets and riverine N&P fluxes for the drainages to the North Atlantic Ocean:natural and human influences[J].Biogeochemistry,1996,35(1):75-139.
    [7]Grantz E M,Haggard B E,Scott J T.Stoichiometric imbalance in rates of nitrogen and phosphorus retention,storage,and recycling can perpetuate nitrogen deficiency in highly-productive reservoirs[J].Limnology and Oceanography,2014,59(6):2203-2216.
    [8]Dynesius M,Nilsson C.Fragmentation and flow regulation of river systems in the northern third of the world[J].Science,1994,266(5186):753-762.
    [9]徐雅倩,徐飘,杨正健,等.河道型水库支流库湾营养盐动态补给过程[J].环境科学,2018,39(2):765-773.Xu Y Q,Xu P,Yang Z J,et al.Dynamic replenishment process of nutrients in tributary of channel reservoir[J].Environmental Science,2018,39(2):765-773.
    [10]Beusen A H W,Dekkers A L M,Bouwman A F,et al.Estimation of global river transport of sediments and associated particulate C,N,and P[J].Global Biogeochemical Cycles,2005,19(4):GB4S05.
    [11]Seitzinger S P,Kroeze C,Bouwman A F,et al.Global patterns of dissolved inorganic and particulate nitrogen inputs to coastal systems:recent conditions and future projections[J].Estuaries,2002,25(4):640-655.
    [12]Turner R E,Rabalais N N.Linking landscape and water quality in the mississippi river basin for 200 years[J].Bioscience,2003,53(6):563-572.
    [13]王晓彤,罗光富,操满,等.库湾营养盐循环对三峡库区营养盐输运的影响:以草堂河为例[J].环境科学,2016,37(8):2957-2963.Wang X T,Luo G F,Cao M,et al.Effect of nutrient cycles in tributaries on the transport of nutrient in the Three Gorge Reservoirs:a case study of caotang river[J].Environmental Science,2016,37(8):2957-2963.
    [14]Stenback G A,Crumpton W G,Schilling K E.Nitrate loss in Saylorville Lake reservoir in Iowa[J].Journal of Hydrology,2014,513:1-6.
    [15]Burford M A,Green S A,Cook A J,et al.Sources and fate of nutrients in a subtropical reservoir[J].Aquatic Sciences,2012,74(1):179-190.
    [16]Kelly V J.Influence of reservoirs on solute transport:a regionalscale approach[J].Hydrological Processes,2001,15(7):1227-1249.
    [17]张路,范成新,朱广伟,等.长江中下游湖泊沉积物生物可利用磷分布特征[J].湖泊科学,2006,18(1):36-42.Zhang L,Fan C X,Zhu G W,et al.Distribution of bioavailable phosphorus(BAP)in lake sediments of the middle and lower reaches of the Yangtze River[J].Journal of Lake Sciences,2006,18(1):36-42.
    [18]Frings P J,Clymans W,Jeppesen E,et al.Lack of steady-state in the global biogeochemical Si cycle:emerging evidence from lake Si sequestration[J].Biogeochemistry,2014,117(2-3):255-277.
    [19]国家环境保护总局.水和废水监测分析方法[M]:(第四版).北京:中国环境科学出版社,2002.
    [20]冉祥滨,刘军,于志刚,等.典型枯水年长江干流硅的分布、输送与滞留[J].湖泊科学,2017,29(3):740-752.Ran X B,Liu J,Yu Z G,et al.Distribution,transport and retention of silica in the main channels of the Yangtze River in exceptionally low water discharge year[J].Journal of Lake Sciences,2017,29(3):740-752.
    [21]Miller J M,Stewart P M.Past,present,and future nutrient quality of a small southeastern river:a pre-dam assessment[J].Water,2013,5(3):988-1005.
    [22]李正阳,袁旭音,王欢,等.西苕溪干流水体、悬浮物和表层沉积物中营养盐分布特征与水质评价[J].长江流域资源与环境,2015,24(7):1150-1156.Li Z Y,Yuan X Y,Wang H,et al.Distribution and evaluation of nutrients from water,suspended sediment and surface sediment in the main stream of the Xitiaoxi river[J].Resources and Environment in the Yangtze Basin,2015,24(7):1150-1156.
    [23]秦丽欢,曾庆慧,李叙勇,等.北京密云水库内湖消落带有机质、营养盐(氮/磷)含量分布特征[J].湖泊科学,2016,28(4):794-801.Qin L H,Zeng Q H,Li X Y,et al.Distribution of organic matter and nutrient content in water-level-fluctuating zone of Miyun Reservoir inner lake,Beijing[J].Journal of Lake Sciences,2016,28(4):794-801.
    [24]汪家铭.四川雷波建设西南最大磷化工产业基地[J].硫磷设计与粉体工程,2011,(1):48.
    [25]郑丙辉,曹承进,秦延文,等.三峡水库主要入库河流氮营养盐特征及其来源分析[J].环境科学,2008,29(1):1-6.Zheng B H,Cao C J,Qin Y W,et al.Analysis of nitrogen distribution characters and their sources of the major input rivers of Three Gorges Reservoir[J].Environmental Science,2008,29(1):1-6.
    [26]王圣瑞,金相灿,庞燕.不同营养水平沉积物在不同p H下对磷酸盐的等温吸附特征[J].环境科学研究,2005,18(1):53-57.Wang S R,Jin X C,Pang Y.The sorption isotherms of phosphate to different nutrient levels of sediments in different p H[J].Research of Environmental Sciences,2005,18(1):53-57.
    [27]周济福,曹文洪,杨淑慧,等.河口泥沙研究的进展[J].泥沙研究,2003,(6):75-80.Zhou J F,Cao W H,Yang S H,et al.Advances of sediment research in estuaries[J].Journal of Sediment Research,2003,(6):75-80.
    [28]Humborg C,Blomqvist S,Avsan E,et al.Hydrological alterations with river damming in northern Sweden:implications for weathering and river biogeochemistry[J].Global Biogeochemical Cycles,2002,16(3):1039.
    [29]蔡林颖,杨丽标,雷坤,等.河流氮、磷滞留研究方法综述[J].中国农学通报,2013,29(26):106-111.Cai L Y,Yang L B,Lei K,et al.Review on measurements of nitrogen and phosphorus retention in riverine ecosystem[J].Chinese Agricultural Science Bulletin,2013,29(26):106-111.
    [30]刘梅冰,陈兴伟,陈莹.山美水库氮营养盐滞留特征及其影响因素的多时间尺度分析[J].应用生态学报,2016,27(7):2348-2356.Liu M B,Chen X W,Chen Y.Multiple time-scale analysis of nitrogen retention characteristics and influencing factors in Shanmei Reservoir,Fujian,China[J].Chinese Journal of Applied Ecology,2016,27(7):2348-2356.
    [31]周涛,程天雨,虞宁晓,等.乌江中上游梯级水库氮磷滞留效应[J].生态学杂志,2018,37(3):707-713.Zhou T,Cheng T Y,Yu N X,et al.Nitrogen and phosphorus retention in cascade reservoirs along the upper reaches of Wujiang River[J].Chinese Journal of Ecology,2018,37(3):707-713.
    [32]胡春华,楼倩,丁文军,等.鄱阳湖氮、磷营养盐的滞留效应研究[J].环境污染与防治,2012,34(9):1-4.Hu C H,Lou Q,Ding W J,et al.Study on the retention effect of nitrogen and phosphate nutrients in Poyang Lake[J].Environmental Pollution and Control,2012,34(9):1-4.
    [33]马培,李新艳,王华新,等.河流反硝化过程及其在河流氮循环与氮去除中的作用[J].农业环境科学学报,2014,33(4):623-633.Ma P,Li X Y,Wang H X,et al.Denitrification and its role in cycling and removal of nitrogen in river[J].Journal of AgroEnvironment Science,2014,33(4):623-633.
    [34]胡春华,周文斌,钟夏莲,等.江西省万安水库对氮、磷营养盐的滞留效应[J].湖泊科学,2011,23(1):35-39.Hu C H,Zhou W B,Zhong X L,et al.Retention of nitrogen and phosphorus in Wan'an Reservoir,Jiangxi Province[J].Journal of Lake Sciences,2011,23(1):35-39.
    [35]向鹏,王仕禄,卢玮琦,等.乌江流域梯级水库的氮磷分布及其滞留效率研究[J].地球与环境,2016,44(5):492-501.Xiang P,Wang S L,Lu W Q,et al.Distribution and retention efficiency of nitrogen and phosphorus in cascade reservoirs in Wujiang River Basin[J].Earth and Environment,2016,44(5):492-501.
    [36]Bachmann R W.Reservoir limnology:ecological perspectives by Kent W.Thornton;Bruce L.Kimmel;Forest E.Payne[J].Journal of the North American Benthological Society,1990,10(1):85-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700