用户名: 密码: 验证码:
湖库水华发生机理研究进展及防治关键技术
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Occurrence Mechanism and Key Technologies for Prevention and Control of Water Bloom in Lakes and Reservoirs
  • 作者:林莉 ; 湛若云 ; 李青云 ; 金海洋 ; 孙婷婷
  • 英文作者:Lin Li;Zhan Ruoyun;Li Qingyun;Jin Haiyang;Sun Tingting;Basin Water Environmental Research Department, Changjiang River Scientific Research Institute;Key Lab of Basin Water Resource and Eco-environmental Science in Hubei Province, Changjiang River Scientific Research Institute;North Water Diversion Project Limited Liability Company;
  • 关键词:藻类 ; 湖库 ; 水华机理 ; 治理技术
  • 英文关键词:Algae;;Lakes and Reservoirs;;Water Bloom Mechanism;;Treatment Technology
  • 中文刊名:长江技术经济
  • 英文刊名:Technology and Economy of Changjiang
  • 机构:长江科学院流域水环境研究所;流域水资源与生态环境科学湖北省重点实验室;南水北调中线水源有限责任公司;
  • 出版日期:2019-06-15
  • 出版单位:长江技术经济
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金项目(51309019);; 中央级公益性科研院所基本科研业务项目(CKSF2019380SH,CKSF2017062/SH)
  • 语种:中文;
  • 页:95-102
  • 页数:8
  • CN:42-1896/F
  • ISSN:2096-4676
  • 分类号:X524
摘要
水华频繁发生引发环境污染与水质安全等诸多问题,掌握湖库水华发生机理并研究高效经济的水华防治技术尤为急迫。本文在梳理湖库水华发生机理及已有水华治理技术的基础上,提出了营养盐削减和藻类生长控制的水华防治技术体系及其关键技术。针对藻类问题,研发了移动式微电流电解抑藻技术,通过曝气、电解等单元的有机组合抑制藻类生长,原型产品在武汉市小型湖泊进行了应用,水体叶绿素a浓度由18.5μg/L降至9.9μg/L,该湖泊当年无水华发生。针对富营养化限制性因子磷难以处理的问题,将废弃的选铜尾砂和生物炭进行资源化利用,转化为除磷剂新材料。选铜尾砂除磷剂可将浓度为10.2 mg/L的含磷水体处理至满足一级A排放标准(≤0.5mg/L)。改性生物炭除磷剂可将浓度为0.5mg/L的含磷水体处理至满足地表水III类水质标准(≤0.05mg/L)。
        The frequent occurrence of water blooms has caused many problems such as environmental pollution and water quality safety. It is particularly urgent to explore the mechanism of water bloom in lakes and reservoirs and to study high-efficiency and economical water bloom prevention and control technology. Based on the summary of the mechanism of water bloom in lakes and reservoirs and the existing water bloom control technology, this paper proposes the water bloom prevention technology system and key technologies for nutrient salt reduction and algae growth control.For the problem of algae, a mobile micro-current electrolysis-inhibiting technology was developed to inhibit the growth of algae by combination of aeration, electrolysis and other units. The prototype product was applied in a small lake in Wuhan, and the concentration of chlorophyll-a in water decreased from 18.5 μg/L to 9.9 μg/L, there was no water bloom in that year. In view of the problem that phosphorus is difficult to treat, the waste copper tailings and biochar were recycled and converted into new materials for dephosphorization. The copper tailings dephosphorization agent can be used to treat the phosphorus-containing water with a concentration of 10.2 mg/L to meet the Class A emission standard for pollutant discharge from urban sewage treatment plants(≤0.5 mg/L). The modified biochar dephosphorization agent can treat the phosphorus-containing water with a concentration of 0.5 mg/L to meet the class III water quality standard for surface water(≤0.05 mg/L).
引文
[1]谢平.太湖蓝藻的历史发展与水华灾害[M].北京:科学出版社, 2008.
    [2]Guo L. Doing Battle with the green monster of Taihu Lake[J]. Science. 2007, 317(5842):1166.
    [3]Stone R. China Aims to Turn Tide Against Toxic LakePollution[J]. Science. 2011, 333(6047):1210-1211.
    [4]朱广伟,金颖薇,任杰,等.太湖流域水库性水源地硅藻水华发生特征及对策分析[J].湖泊科学. 2016, 28(1):9-21.
    [5]罗欢,陈华香,陈文龙,等.水库蓝藻生态治理措施及效果评估[J].华北水利水电大学学报(自然科学版).2018, 39(4):51-55.
    [6]潘晓洁,黄一凡,郑志伟,等.三峡水库小江夏初水华暴发特征及原因分析[J].长江流域资源与环境. 2015,24(11):1944-1952.
    [7]刘德富,杨正健,纪道斌,等.三峡水库支流水华机理及其调控技术研究进展[J].水利学报. 2016, 47(3):443-454.
    [8]马健荣,邓建明,秦伯强,等.湖泊蓝藻水华发生机理研究进展[J].生态学报. 2013, 33(10):3020-3030.
    [9]王小艺,唐丽娜,刘载文,等.城市湖库蓝藻水华形成机理[J].化工学报. 2012, 63(5):1492-1497.
    [10]孔繁翔,宋立荣.蓝藻水华形成过程及其环境特征研究[M].北京:科学出版社.2011.
    [11]Xie L.Q.,Xie P.,Li S.X. The low TN:TP ratio, a cause or a result of Microcystis bloom?[J]. Water Research, 2003, 37:2973-2080.
    [12]熊文,廖奇志.南水北调中线工程对汉江中下游“水华”的影响及对策[J].长江科学院院报. 2003, 20(5):45-48.
    [13]郑凌凌.汉江硅藻水华优势种生理生态学研究[D].福建师范大学硕士学位论文. 2005.
    [14]宋洋,张陵蕾,陈旻,等.流速对水库水华优势种铜绿微囊藻生长的影响研究[J].四川大学学报(工程科学版).2016, 48(增刊1):25-32.
    [15]辛小康,尹炜,叶闽.水动力调控三峡库区支流水华方案初步研究[J].水电能源科学. 2011, 29(7):16-18.
    [16]刘心愿,宋林旭,纪道斌,等.降雨对蓝藻水华消退影响及其机制分析[J].环境科学. 2018,39(2):774-782.
    [17] Reynolds C.S, Jaworski G.H.M., Cmiech H.A.,et al. On the annual cycle of the blue-green alga Microcystis aeruginosa Kutz. Emend. Elenkin[J].Philosophical Transactions of the Royal Society B:Biological Sciences. 1981, 293:419-477.
    [18]乔俊莲,董磊,董敏殷,等.高频超声波对微囊藻毒素释放及降解的特性研究[J].中国给水排水, 2009, 25(17):94-96.
    [19]丛海兵,黄廷林,赵建伟,等.扬水曝气技术在水源水质改善中的应用[J].环境污染与防治. 2006, 28(3):215-218.
    [20]马越,黄廷林,丛海兵,等.扬水曝气技术在河道型深水水库水质原位修复中的应用[J].给水排水. 2012, 38(4):7-13.
    [21]董克斌.河道型水库中流速对水华影响研究-藻类生长研究[D].重庆大学硕士学位论文. 2010.
    [22]刘晋高.防控三峡水库支流水华的潮汐式生态调度研究[D].湖北工业大学:硕士学位论文. 2018.
    [23]骆文广,杨国录,宋云浩,等.再议水库生态环境调度[J].水科学进展. 2016, 27(2):317-326.
    [24]王家齐,郑宾国,刘群,等.介质阻挡放电对湖泊水华蓝藻的去除[J].环境工程学报, 2012, 6(8):2477-2482.
    [25]Starling F.L.R.M. 1993. Control of eutrophication by silver carp(Hypophthalmichthys molitrix)in the tropical Paranoa Reservoir(Brasilia, Brazil):a mesocosm experiment[J]. Hydrobiologia, 1993, 257:143-152.
    [26]刘建康,谢平.用鲢鳙直接控制微囊藻水华的围隔实验和湖泊实践[J].生态科学. 2003, 22(3):193-196.
    [27]陈前,杨春和,苏璐璐.国内蓝藻治理中末端处置方法研究进展[J].安徽农业科学, 2009,37(36):18027-18029.
    [28]王娟.藻类水华的发生及控制技术研究现状及展望[J].安徽农业科学. 2011, 39(4):2212-2214.
    [29]林莉,李青云,黄茁,等.微电流电解对铜绿微囊藻的持续抑制研究[J].华中科技大学学报(自然科学版), 2012, 40(10):87-90.
    [30]林莉,李青云,黄茁.湖库水华治理的微电流电解抑藻技术研究[J].人民长江, 2015, 46(19):79-82.
    [31]Lin L, Feng C, Li QY, et al. Effects of electrolysis by low-amperage electric current on the chlorophyll fluorescence characteristics of Microcystis aeruginosa[J]. Environmental Science and Pollution Research. 2015, 22(19):14932-14939.
    [32]Lin L.,Meng X.Y.,Li Q.Y.,et al. Electrochemical oxidation of Microcystis aeruginosa using a Ti/RuO2anode:contributions of electrochemically generated chlorines and hydrogen peroxide[J].Environmental Science and Pollution Research. 2018, 25:27924-27934.
    [33]Wang H.J., Wang H.Z. Mitigation of lake eutrophication:Loosen nitrogen control and focus on phosphorus abatement[J]. Progress in Natural Science,2009, 19(10):1445-1451.
    [34]干方群,周健民,王火焰,等.不同粘土矿物对磷污染水体的吸附净化性能比较[J].生态环境, 2008, 17(3):914-917.
    [35]郭小芳,王长征,王兴峰.重金属尾矿库的环境影响及防治措施[J].环境与发展, 2015, 27(3):67-71.
    [36]Wang X.Z., Liu Z.M, Liu J.C., et al. Removing Phosphorus from Aqueous Solutions Using Lanthanum Modified Pine Needles[J]. PLoS ONE, 2015, 10(12):1-16.
    [37]孙霄,盛梅,沈晓强,等.载纳米铁花生壳的制备及其吸附除磷性能[J].环境工程学报, 2017, 11(1):386-392.
    [38]马锋锋,赵保卫,刁静茹,等.牛粪生物炭对水中氨氮的吸附特性[J].环境科学, 2015, 36(5):1678~1685.
    [39]孙海军,冯彦房,曹学鸿,等. Al/Zn改性竹炭去除水体中PO43-离子及影响因素的研究[J].水处理技术,2017, 43(8):40-49.
    [40]陈靖,李伟民,丁文川,等. Fe/Mg负载改性竹炭去除水中的氨氮[J].环境工程学报, 2015, 9(11):5187-5192.
    [41]秦艳敏,梁美娜,王敦球,等.桑树杆生物炭/铁锰氧化物复合吸附剂的制备及其对As(V)的吸附机理研究[J].农业环境科学学报, 2016, 35(7):1398-1406.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700