用户名: 密码: 验证码:
贝藻混养对舟山东极岛养殖海域二氧化碳的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Algae-shellfish Polyculture on CO_2 in the Aquaculture Zone Located at Dongji Island of Zhoushan
  • 作者:吴杭纬经 ; 赵泓睿 ; 彭苑媛 ; 赵晟
  • 英文作者:WU Hang-weijing;ZHAO Hong-rui;PENG Yuan-yuan;Zhejiang Ocean University;
  • 关键词:贝藻养殖 ; 二氧化碳浓度 ; pH ; 模型计算法 ; 舟山东极岛
  • 英文关键词:Algae-shellfish polyculture;;CO_2 concentration;;pH;;Model calculation;;Dongji Island of Zhoushan
  • 中文刊名:安徽农业科学
  • 英文刊名:Journal of Anhui Agricultural Sciences
  • 机构:浙江海洋大学;
  • 出版日期:2019-08-12 11:05
  • 出版单位:安徽农业科学
  • 年:2019
  • 期:15
  • 基金:NSFC-浙江两化融合联合基金项目(U1609204);; 浙江省自然科学基金项目(LY15D060006);; 国家重点研发计划支持项目(2017YFA0604902);; 舟山市科技局科技计划项目(2016C41017)
  • 语种:中文;
  • 页:61-63+67
  • 页数:4
  • CN:34-1076/S
  • ISSN:0517-6611
  • 分类号:X714
摘要
[目的]研究混合培养是否能够促进藻类更好地吸收二氧化碳,从而在养殖区域中降低海洋二氧化碳浓度。[方法]在舟山东极养殖区现场进行一场模拟围隔试验,将贻贝和龙须菜按照不同的比例进行培养,用于吸收海水中的二氧化碳。[结果]贝藻混合培养下对二氧化碳的去除效果优于贝藻单独培养时的去除效果。而当贝藻按照比例为1.00∶0.15以及1.00∶0.30混合下培养时,海水中的最终二氧化碳浓度分别为1.00∶0.45比例下的5.5倍和2.2倍。[结论]选择1.00∶0.45比例培养贝藻有助于对海水中二氧化碳的吸收。
        [Objective] The research aimed to study whether polyculture was able to promote algae to absorb CO_2 much better, thereby reducing the CO_2 concentration in the cultured area. [Method]A simulated enclosure experiment was performed in an aquaculture zone located at Dongji Island of Zhoushan. Mytilus coruscus and Gracilaria lemaneiformis were cultured in different proportions for the determination of CO_2 in seawater. [Result]The removal effect of CO_2 in algae-shellfish polyculture was better than that in monoculture. When the Mytilus coruscus and Gracilaria lemaneiformis were cultured in a ratio of 1.00∶0.15 and 1.00∶0.30, the final CO_2 concentration in seawater was 5.5 times and 2.2 times, respectively, at a ratio of 1.00∶0.45.[Conclusion]It will help to absorb CO_2 in seawater by selecting the proportion of 1.00∶0.45 in an algae-shellfish polyculture.
引文
[1] GOTO D,MORIMOTO S,AOKI S,et al.Vertical profiles and temporal variations of greenhouse gases in the stratosphere over Syowa Station,Antarctica[J].SOLA,2017,13:224-229.
    [2] GOLDMAN J A L,BENDER M L,MOREL M M.The effects of pH and pCO2 on photosynthesis and respiration in the diatom Thalassiosira weissflogii[J].Photosynth Res,2017,132:83-93.
    [3] MEEHL G A,COVEY C,TAYLOR K E,et al.The WCRP CMIP3 multimodel dataset:A new era in climate change research[J].Bull Am Meteorol Soc,2007,88(9):1383-1394.
    [4] SHIOGAMA H,CHRISTIDIS N,CAESAR J,et al.Detection of greenhouse gas and aerosol influences on changes in temperature extremes[J].SOLA,2006,2:152-155.
    [5] WANG B,LI Y Q,WU N,et al.CO2 bio-mitigation using microalgae[J].Appl Microbiol Biotechnol,2008,79(5):707-718.
    [6] BOUILLON S,RIVERA-MONROY V,TWILLEY R,et al.The management of natural coastal carbon sinks[M]//LAFFOLEY D,GRIMSDITCH G.The management of natural coastal carbon sinks.Gland,Switzerland:IUCN,2009.
    [7] HOOD M,BROADGATE W,URBAN E,et al.Ocean acidification:A summary for policymakers from the second symposium on the Ocean in a High-CO2 World[R].IOC,2009.
    [8] NELLEMANN C,CORCORAN E,DUARTE C M,et al.A rapid response assessment[R].Nairobi:United Nations Environment Programme,GRID-Arendal,2009.
    [9] TANG Q S,ZHANG J H,FANG J G.Shellfish and seaweed mariculture increase atmospheric CO2 absorption by coastal ecosystems[J].Marine ecology progress series,2011,424:97-104.
    [10] RUGINIS T,ZILIUS M,VYBERNAITE-LUBIENE I,et al.Seasonal effect of zebra mussel colonies on benthic processes in the temperate mesotrophic Plateliai Lake,Lithuania[J].Hydrobiologia,2017,802(8):23-38.
    [11] PORZIO L,BUIA M C,FERRETTI V,et al.Photosynthesis and mineralogy of Jania rubens at low pH/high pCO2:A future perspective[J].Science of the total environment,2018,628/629:375-383.
    [12] HOPKINSON B M,XU Y,SHI D L,et al.The effect of CO2 on the photosynthetic physiology of phytoplankton in the Gulf of Alaska[J].Limnology and oceanography,2010,55(5):2011-2024.
    [13] WU Y P,GAO K S,RIEBESELL U.CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum[J].Biogeosciences discussions,2010,7(9):2915-2923.
    [14] ZHOU L H,ZHENG T L,WANG X,et al.Effect of five chinese traditional medicines on the biological activity of a red-tide causing alga-Alexandrium tamarense[J].Harmful Algae,2007,6(3):354-360.
    [15] 殷燕,吴志旭,刘明亮,等.千岛湖溶解氧的动态分布特征及其影响因素分析[J].环境科学,2014,35(7):2539-2546.
    [16] 杨丽娜,李正炎,张学庆.大辽河近入海河段水体溶解氧分布特征及低氧成因的初步分析[J].环境科学,2011,32(1):51-57.
    [17] DING Y K,RONG N,SHAN B Q.Impact of extreme oxygen consumption by pollutants on macroinvertebrate assemblages in plain rivers of the Ziya River Basin,north China[J].Environmental science & pollution research,2016,23(14):14147-14156.
    [18] CHAPMAN D V.Water quality assessments:A guide to the use of Biota,sediments and water in environmental monitoring[M].London:Chapman&Hall,1992.
    [19] YAMADA Y,MITO Y,IGETA A,et al.Dissolved oxygen concentration in river sediment of the Lake Biwa tributaries,Japan[J].Limnology,2012,13(1):149-154.
    [20] WUNGRAMPHA S,JOSHI R,SINGLA-PAREEK S L,et al.Photosynthesis and salinity:Are these mutually exclusive?[J].Photosynthetica,2018,56(1):366-381.
    [21] MOHAMMADI M H,KHATAAR M,SHEKARI F.Effect of soil salinity on the wheat and bean root respiration rate at low matric suctions[J].Paddy & water environment,2017,15(3):639-648.
    [22] SHAFER D J,KALDY J E,SHERMAN T D,et al.Effects of salinity on photosynthesis and respiration of the seagrass Zostera japonica:A comparison of two established populations in North America[J].Aquatic botany,2011,95(3):214-220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700