用户名: 密码: 验证码:
海上搜救辅助决策技术研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advance in maritime search and rescue decision support techniques
  • 作者:朱岿 ; 牟林 ; 王道胜 ; 孙均楷
  • 英文作者:ZHU Kui;MU Lin;WANG Dao-sheng;SUN Jun-kai;College of Marine Science and Technology,China University of Geosciences;Shenzhen Research Institute,China University of Geosciences;
  • 关键词:物理海洋学 ; 海上搜救 ; 辅助决策 ; 搜救区域 ; 搜寻方案
  • 英文关键词:physical oceanography;;maritime search and rescue;;decision support;;search area;;search plan
  • 中文刊名:应用海洋学学报
  • 英文刊名:Journal of Applied Oceanography
  • 机构:中国地质大学(武汉)海洋学院;中国地质大学深圳研究院;
  • 出版日期:2019-08-15
  • 出版单位:应用海洋学学报
  • 年:2019
  • 期:03
  • 基金:国家重点研发计划资助项目(2017YFC1404700);; 深圳市科技创新委员会基础研究学科布局资助项目(20170418);; 广东省促进经济发展专项资金(海洋经济发展用途)资助项目(GDME-2018E001);; 中国地质大学(武汉)2018年第一批本科教学工程资助项目(ZL201819);中国地质大学(武汉)2018年研究生教育教学改革基金资助项目(YJG2018219)
  • 语种:中文;
  • 页:145-154
  • 页数:10
  • CN:35-1319/P
  • ISSN:2095-4972
  • 分类号:U676.8
摘要
随着我国"海洋强国"和"一带一路"战略的实施,海上活动日益频繁,海难事故风险持续增长,海上人员安全问题受到了越来越多的关注。本文以海上搜救区域的确定和搜寻方案的规划两个关键技术为切入点,综述了海上搜救辅助决策关键技术的发展过程和相应的研究成果。首先,针对海上遇险目标的运动特性,介绍了遇险目标漂移模型的发展,概述了漂移轨迹和搜救区域的计算方法;其次,分别对静止和运动目标的搜寻策略进行了回顾与归纳;最后,总结了上述技术在国内外的业务化应用情况,进而探讨了相关技术的未来发展方向。本文旨在为我国海上搜救应急保障体系的建设和重大海难事故应急反应能力的提高提供依据和参考。
        With the implementation of "Maritime Power"and "the Belt and Road"strategies,the frequencies of the active oceanic operations as well as the risk of marine casualty are considerable in China,thus the issue of maritime safety is a growing concern. In this paper,the research and development of two key techniques of Maritime Search and Rescue Decision Support System are reviewed along with the optimal determination of maritime search area and the optimal planning of search schemes. Firstly,the development of drift model of maritime distress target and the algorithm of drift trajectory and search area are introduced. Then,the search strategies for both stationary and moving targets are summarized. At last,the operational applications of the above technologies at home and abroad are overviewed and suggestions for the future development of related technologies are proposed. This paper aims at providing the criterions and references for improving the construction of contingency reaction system and emergency response capability of the marine casualty.
引文
[1]国家海洋局. 2017年中国海洋经济统计公报[R].北京:国家海洋局,2017.
    [2] FROST J R,STONE L D. Review of search theory:Advances and applications to search and rescue decision support[R]. Groton:U. S. Coast Guard Research and Development Center,2001.
    [3] ANDERSON E,ODULO A,SPAULDING M. Modeling of leeway drift[R]. Groton:U. S. Coast Guard Research and Development Center,1998.
    [4]黄娟,徐江玲,高松,等.基于海上实验对海上漂移物运移轨迹影响因素的分析[J].海洋预报,2014,31(4):97-104.
    [5]周水华,杨阳,冯伟忠.广东海域模拟人和无动力渔船海上漂移实验研究[J].热带海洋学报,2013,32(1):87-94.
    [6] HODGINS D O,HODGINS S L M. Phase II leeway dynamics program:Development and verification of a mathematical drift for liferafts and small boats[R]. Ottawa:Canadian Coast Guard,1998.
    [7] ALLEN A A,PLOURDE J V. Review of leeway:field experiments and implementation[R]. Groton:U. S. Coast Guard Research and Development Center,1999.
    [8] ALLEN A A. Leeway divergence[R]. Groton:U. S. Coast Guard Research and Development Center,2005.
    [9] BREIVIK,ALLEN A A. An operational search and rescue model for the Norwegian Sea and the North Sea[J]. Journal of Marine Systems,2011,69(1):99-113.
    [10] SPAULDING M L,HOWLETT E. Application of SARMAP to estimate probable seach area for objects lost at sea[J]. Oceanographic Literature Review,1997,5(44):523.
    [11] GUEDES SOARES C,RUSU L,BERNARDINO M,et al. An operational wave forecasting system for the Portuguese continental coastal area[J]. Journal of Operational Oceanography,2011,4(2):17-27.
    [12] ALLEN A,ROTH J,MAISONDIEU C,et al. Field determination of the leeway of drifting objects[R]. Blindern:Norwegian Meteorological Institute,2010.
    [13] BREIVIK,MAISONDIEU C,ROTH J C,et al. The leeway of shipping containers at different immersion levels[J]. Ocean Dynamics,2012,62(5):741-752.
    [14] BRUSHETT B A,ALLEN A A,FUTCH V C,et al. Determining the leeway drift characteristics of tropical Pacific island craft[J]. Applied Ocean Research,2014,44:92-101.
    [15]徐强强,肖文军,管琴乐,等.一次基于实测资料的海上搜救漂浮物的风漂系数优化实验[J].海洋预报,2017,34(2):67-71.
    [16]陈海涛,许炜铭,孙利元,等. AP98风压漂移模型应用实例:东方红2号漂移试验[J].海洋湖沼通报,2017(6):46-51.
    [17]旷芳芳,靖春生,张俊鹏.基于观测和模型的风致漂移系数研究[J].应用海洋学学报,2017,36(1):41-48.
    [18]黄娟,徐江玲,高松,等.基于海上试验对海上漂移物运移轨迹影响因素的分析[J].海洋预报,2014,31(4):97-104.
    [19] TANIZAWA K,MINAMI M,IMOTO Y. On the drifting speed of floating bodies in waves[J]. Journal of the Society of Naval Architects of Japan,2009,2 001(190):151-160.
    [20]胡志武,张秋荣,顾维国.遇难船舶漂流轨迹预测技术[J].航海技术,2007(3):18-21.
    [21] RHRS J,CHRISTENSEN K H,HOLE L R,et al. Observation-based evaluation of surface wave effects on currents and trajectory forecasts[J]. Ocean Dynamics,2012,62(10/11/12):1 519-1 533.
    [22]徐江玲,高松,葛勇,等.波浪对海上漂浮物漂移轨迹作用分析[J].防灾科技学院学报,2017,19(2):75-79.
    [23]刘同木,张炜,曹永港,等.基于受力分析的落水人员漂移轨迹预测研究[J].海洋预报,2017,34(1):66-71.
    [24]国际海事组织/国际民用航空组织.国际航空和海上搜寻救助手册[M].中华人民共和国海事局,译.北京:科学出版社,2005.
    [25] BURCIU Z. Applicational of Fokker-Planck equation for modeling the search and rescue area at sea[J]. Annual of Navigation,2002:21-32.
    [26]邵伟.蒙特卡洛方法及在一些统计模型中的应用[D].济南:山东大学,2012.
    [27] MURPHY D L,ALLEN A A. An evaluation of CASP drift predictions near the New England shelf/slope front[R]. Groton:U. S. Coast Guard Research and Development Center,1985.
    [28]肖方兵,尹勇,金一丞,等.基于随机粒子仿真的海上搜救区域确定[J].中国航海,2011,34(3):34-39.
    [29] GAO J,MU L,BAO X,et al. Drift analysis of MH370 debris in the southern Indian Ocean[J]. Frontiers of Earth Science,2018,12:468-480.
    [30]郑宏喆,赵怀慈,王立勇.基于风压差翻转漂移模型的海上搜救区域确定[J].中国航海,2016,39(4):102-107.
    [31] DE DOMINICIS M,LEUZZI G,MONTI P,et al. Eddy diffusivity derived from drifter data for dispersion model applications[J]. Ocean Dynamics,2012,62(9):1 381-1 398.
    [32] SPAULDING M L,ISAJI T,HALL P,et al. A hierarchy of stochastic particle models for search and rescue(SAR):Application to predict surface drifter trajectories using HF radar current forcing[J]. Journal of Marine Environmental Engineering,2006,8(3):181.
    [33] BERTINO L,LISAETER K A,SCIENT S. The TOPAZ monitoring and prediction system for the Atlantic and Arctic Oceans[J]. Journal of Operational Oceanography,2008,1(2):15-18.
    [34] MELSOM A,COUNILLON F,LACASCE J H,et al. Forecasting search areas using ensemble ocean circulation modeling[J].Ocean Dynamics,2012,62(8):1 245-1 257.
    [35] RIXEN M,FERREIRA-COELHO E. Operational surface drift prediction using linear and non-linear hyper-ensemble statistics on atmospheric and ocean models[J]. Journal of Marine Systems,2007,65(1/2/3/4):105-121.
    [36] RIXEN M,FERREIRA-COELHO E,SIGNELL R. Surface drift prediction in the Adriatic Sea using hyper-ensemble statistics on atmospheric,ocean and wave models:uncertainties and probability distribution areas[J]. Journal of Marine Systems,2008,69(1/2):86-98.
    [37] SCOTT R B,FERRY N,DRVILLON M,et al. Estimates of surface drifter trajectories in the equatorial Atlantic:a multimodel ensemble approach[J]. Ocean Dynamics,2012,62(7):1 091-1 109.
    [38] BRUSHETT B A,ALLEN A A,KING B A,et al. Application of leeway drift data to predict the drift of panga skiffs:Case study of maritime search and rescue in the tropical Pacific[J]. Applied Ocean Research,2017,67:109-124.
    [39] KOOPMAN B O. Search and screening[R]. Washington:U. S. Nacy Operations Evaluation Group,1946.
    [40]肖方兵.海上搜救决策支持系统关键技术的研究[D].大连:大连海事大学,2011.
    [41] KOOPMAN B O. The theory of search,PartⅠ:kinematic bases[J]. Operations Research,1956,4(3):324-326.
    [42] KOOPMAN B O. The theory of search,PartⅡ:target detection[J]. Operations Research,1956,4(5):503-531.
    [43] KOOPMAN B O. The theory of search,PartⅢ:the optimum distribution of searching effort[J]. Operations Research,1957,5(5):613-626.
    [44] CHARNES A,COOPER W W. The theory of search:optimum distribution of search effort[J]. Management Science,1958,5(1):44-50.
    [45] DE GUENIN J. Optimum distribution of effort:An extension of the Koopman basic theory[J]. Operations Research,1961,9(1):1-7.
    [46] STONE L D. Incremental and total optimization of separable functionals with contraints[J]. Siam Journal on Control&Optimization,2006,14(5):791-802.
    [47] STONE L D. Theory of optimal search[M]. New York:Academic Press,1975.
    [48] STONE L D. Search for targets with generalized conditionally deterministic motion[J]. SIAM Journal on Applied Mathematics,1974,27(2):239-255.
    [49] POLLOCK S M. A simple model of search for a moving target[J]. Operations Research,1970,18(5):883-903.
    [50] BROWN S S. Optimal search for a moving target in discrete time and space[J]. Operations Research,1980,28(6):1 275-1 289.
    [51] WASHBURN A R. Search for a moving target:The fab algorithm[J]. Operations Research,1983,31(4):739-751.
    [52] TRUMMEL K E,WEISINGER J R. The complexity of the optimal searcher path problem[J]. Operations Research,1986,34(2):324-327.
    [53] OHSUMI A. Algorithms for optimal searching and control systems for a Markovian target[J]. Control and Dynamic Systems,1989,30(3):99-165.
    [54]罗永宏.海上搜救智能辅助决策系统探究[J].中国航海,2004(3):21-24.
    [55]于卫红,贾传荧.基于XML的海上搜救智能决策支持系统知识库[J].大连海事大学学报,2005,31(4):30-32.
    [56]肖文军,堵盘军,龚茂珣,等.上海沿海海上搜救预测模型系统的研究和应用[J].海洋预报,2013(4):79-86.
    [57] KRATZKE T M,STONE L D,FROST J R. Search and rescue optimal planning system[C]//International Society of Information Fusion. Proceedings of the 13th international conference on information fusion. Edinburgh:IEEE,2010:1-8.
    [58] BMT CORDAH. Search and Rescue Information System(SARIS)[EB/OL].[2019-07-09]. https://www. bmt. org/industries/coastal-infrastructure/search-and-rescue/.
    [59] BREIVIK,ALLEN A A,MAISONDIEU C,et al. Advances in search and rescue at sea[J]. Ocean Dynamics,2013,63(1):83-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700