用户名: 密码: 验证码:
生物发酵制药废水产生的恶臭与VOCs特征及评估
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:ODOR CHARACTERISTICS AND POLLUTION ESTIMATION OF BIOPHARMACEUTICAL WASTEWATER TREATMENT PROCESSES
  • 作者:马嘉伟 ; 王彦杰 ; 郭雪松 ; 李琳 ; 刘俊新 ; 李文凯 ; 张文哲
  • 英文作者:MA Jia-wei;WANG Yan-jie;GUO Xue-song;LI Lin;LIU Jun-xin;LI Wen-kai;ZHANG Wen-zhe;Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences;National Engineering Laboratory for VOCs Pollution Control Material & Technology,University of Chinese Academy of Sciences;
  • 关键词:生物发酵制药 ; 恶臭气体 ; VOCs ; 韦伯-费希纳定律 ; 潜在污染能力
  • 英文关键词:fermentation pharmacy;;odor;;volatile organic compounds;;Weber-Fechner law;;potential pollution capacity
  • 中文刊名:环境工程
  • 英文刊名:Environmental Engineering
  • 机构:中国科学院生态环境研究中心;中国科学院大学挥发性有机物污染控制材料与技术国家工程实验室;
  • 出版日期:2019-09-15
  • 出版单位:环境工程
  • 年:2019
  • 期:09
  • 基金:国家自然科学基金(51878650)
  • 语种:中文;
  • 页:37-42
  • 页数:6
  • CN:11-2097/X
  • ISSN:1000-8942
  • 分类号:X78
摘要
生物发酵是医用、兽用抗生素的重要工业化生产途径。生物制药废水处理过程中产生大量的异味物质,污染环境。在宁夏北部某生物制药企业的污水处理站设置采样点,分析沉砂池、水解酸化池、生化池和污泥脱水间等处理工艺段的异味特征。4个工艺段的恶臭浓度分别为653. 64,881. 50,1988. 71,998. 00 OU。生化池是产生异味的主要单元;二乙胺和丙二醇甲醚是主要的VOCs,总浓度分别为3237. 42,1132. 73 mg/m~3,总恶臭加权等标污染负荷比分别为57. 30%和19. 52%,均超过10%,是该污水处理站优先控制的异味污染物。采用韦伯-费希纳定律,构建评估指标体系,分级评估异味物质的潜在污染能力。二乙胺和丙二醇甲醚的污染能力指数均为Ⅱ级,属于中度易污染,影响范围为4~9 km。
        Biological fermentation is an industrial production method which was applied widely to produce pharmaceutical and veterinary antibiotics. Considerable quantity of odorous substances are generated and released into the surrounding air during the processes of pharmaceutical wastewater treatment,causing environmental pollution and safety risks. In order to investigate the odors generated from different sewage treatment stages,sampling points were set up in a sewage treatment station of a pharmaceutical factory in this study. Results showed that the concentrations of odors were 653. 64 OU at the grit chamber,881. 50 OU at hydrolytic acidification pool,1988. 71 OU at biological pool,and 998. 00 OU at sludge dewatering chamber. The main source of odor was the biochemical pool in the wastewater treatment station. Diethylamine and propylene glycol methyl ether( PGME) were determined as the main odor pollutants,with total concentrations of 3237. 42 mg/m~3 and 1132. 73 mg/m~3,respectively. The total odor-weighted equivalent pollution load ratios of these two compounds were 57. 30% and 19. 52%,respectively,which both exceeded 10%. They were considered as the priority control pollutants. In order to assess their potential pollution capacities,the evaluation index system was established using the Weber-Fechner law. Both diethylamine and PGME had Grade II of potential pollution capacities,which assigned to moderate pollution with the impact range of 4 ~ 9 km.
引文
[1]郭斌,律国黎,任爱玲,等.维生素C工业废水处理系统VOCs污染特性[J].环境科学,2013,34(12):4654-4660.
    [2]翟增秀,张君,闫凤越,等.生物制药企业恶臭污染物的排放特征[J].城市环境与城市生态,2013(3):19-21.
    [3]陈金胜,伯鑫,徐君妃,等.我国环境影响评价VOCs模拟研究进展[J].环境工程,2018,36(3):143-147.
    [4]练川,周江,陈思琳,等.贵阳市某工业园区环境空气中VOCs的污染特征与健康风险评价[J].环境工程,2018,36(7):161-164.
    [5]董艳平,王合生,喻义勇,等.城镇污水处理厂进、出水COD浓度变化规律分析[J].环境科学与管理,2009,34(11):105-108.
    [6]黄岑彦.污水处理厂的挥发性有机物排放特征及健康风险评价[J].环境污染与防治,2018,40(6):704-709.
    [7]耿雪松,张春林,王伯光.城市污水处理厂污水处理工艺对VOCs挥发特征影响[J].中国环境科学,2015,35(7):1990-1997.
    [8]林坚,李琳,刘俊新,等.城市污水厂主要处理单元恶臭及挥发性有机物的逸散[J].环境工程学报,2016,(5):2329-2334.
    [9]眭光华.城市污水处理厂及泵站除臭技术研究[D].广州:广东工业大学,2008.
    [10]李志强,刘绪宗,王建利.生物除臭技术[J].中国给水排水,1999,15(9):52-54.
    [11] Cudmore R S a D,A. Environmental Standards for Industrial Odour Effects:A Recommended Approach for New Zealand[R]. Aurora Environmental Limited,1999.
    [12] Tracy Freeman R C. Air Quality Technical Report:Review of Odour Management in New Zealand[R]. No.24,2002.
    [13] No 47—2002. Guidance for the Assessment of Environmental Factors-Assessmem of Odour Impacts from New proposals[S].Western Australian Environmental Protection Agency.
    [14] NVN 2820—1995. Air Quality-Sensory Odour Measurement Using An Olfactometer[S].
    [15]国家环境保护局.恶臭污染无排放标准:GB 14554—93[S].北京:国家环境保护局,1994.
    [16]李伟芳.国内恶臭污染物优先控制的筛选研究[J].上海环境科学,2012(1):1-4.
    [17]环境保护部.国家污染物环境健康风险名录[M].北京:中国环境科学出版社,2009.
    [18]魏巍,王书肖,郝吉明.中国人为源VOC排放清单不确定性研究[J].环境科学,2011,32(2):305-312.
    [19]陆思华,白郁华,张广山,等.大气中挥发性有机化合物(VOCs)的人为来源研究[J].环境科学学报,2006,26(5):757-763.
    [20] ACGIH 2010年工作场所化学物质阈限值名单(一)[J].职业卫生与应急救援,2010,28(6):289-292.
    [21] Threshold limit values for chemical substances and physical agents in the workroom environment with intended changes for 1978.[J].Medical Bulletin Exxon Corporation,1978,38(2):107-143.
    [22]张欢,赵杰,李伟芳,等.恶臭污染源影响评估方法及其应用[J].天津化工,2017,31(5):49-52.
    [23]张欢,邹克华,李伟芳,等.恶臭污染评估指标体系研究[J].安全与环境学报,2015,15(2):344-347.
    [24]邹克华.恶臭污染评估技术及环境基准[M].北京:化学工业出版社,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700