典型城市单元的土壤重金属溯源方法与实证研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Source apportionment methods of soil heavy metals in typical urban units: an empirical study
  • 作者:刘胜然 ; 王铁宇 ; 汤洁 ; 孟晶 ; 何博 ; 赵慧 ; 肖荣波
  • 英文作者:LIU Shengran;WANG Tieyu;TANG Jie;MENG Jing;HE Bo;ZHAO Hui;XIAO Rongbo;College of New Energy and Environment, Jilin University;Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences;University of Chinese Academy of Sciences;School of Environmental Science and Engineering, Guangdong University of Technology;
  • 关键词:农田土壤 ; 重金属 ; 正定矩阵因子 ; 铅同位素 ; 物质流分析 ; 源解析
  • 英文关键词:farmland soils;;heavy metals;;positive matrix factorization;;lead isotope;;material flow analysis;;source apportionment
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:吉林大学新能源与环境学院;中国科学院生态环境研究中心;中国科学院大学;广东工业大学环境科学与工程学院;
  • 出版日期:2019-02-23
  • 出版单位:生态学报
  • 年:2019
  • 期:04
  • 基金:国家重点研发计划(2018YFC1800301,2017YFC0505702);; 国家自然科学基金项目(41877509,41571478);; 广东省应用型科技研发专项(2016B020240008)
  • 语种:中文;
  • 页:157-168
  • 页数:12
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:X53
摘要
随着城市化进程的不断深入,土壤中重金属污染现状及其治理情况越来越受到重视,而查明污染源是有效治理污染的前提。源解析技术目前已广泛的应用于环境受体重金属来源解析实践中,总结了近年来土壤重金属成因分析的常用方法及原理,并提出了一种将多种方法相配合使用的方法体系。选取珠三角某市城郊农田作为研究对象,结果表明,Cd、Pb、Cu、Zn、As存在含量超过国家农用地筛选值的情况,其中Cd超标率高达60.1%。农业活动、工业生产、交通源和自然母质均对研究区土壤重金属的累积产生一定的贡献。正定矩阵因子分析法(PMF,Positive Matrix Factorization)模型模拟的Cd、Ni、Zn和Hg预测值与实测值线性拟合r~2均大于90%,其余元素r~2均大于60%,呈现出很好的相关性,满足研究需要。PMF模型和铅同位素比值法计算得到的交通及农业对土壤Pb累积的贡献率之和分别为86.0%和84.8%,PMF模型和物质流分析法计算得到的农业对土壤Cd的贡献率分别为86.7%和79.7%,结果均比较接近。结果表明正定矩阵因子法、同位素比值分析法,物质流分析法能很好的联用应用于土壤重金属源解析研究。
        With the deepening of urbanization, increasing attention has been paid to the status quo and control of heavy metal pollution in soil; however, identifying pollution sources is the premise of effective pollution control. Source analysis has been widely used to evaluate heavy metals in environmental receptors. In this paper, the common methods and principles of source analysis of soil heavy metals pollution in recent years are summarized, and a system combining various methods is proposed. A typical farmland in the Pearl River Delta was selected as a case area. The results indicated that(1) concentrations of Cd, Pb, Cu, Zn, and As in some soil samples were greater than the filter capacity of agricultural land according to the Soil Environmental Quality of China, especially cadmium, which reached 60.1%; and(2) the accumulation of heavy metals in soils was related to the overuse of fertilizers for industrial production, traffic pollution, and soil parent material.(3) The results of the correlation analysis implied that the r~(2 )values of Cd, Ni, Zn, and Hg were more than 90%, and the r~2 values of other heavy metals were more than 60%, which indicates that there were significant correlations between the values of the measured and predicted heavy metals.(4) The contribution rates of the sum of transportation and agriculture to soil Pb accumulation through the PMF model and Pb stable isotope ratio method were 86.0% and 84.8%, respectively. The contribution rates of agriculture to soil Cd through the PMF model and material flow analysis were 86.7% and 79.7%, respectively.(5) The results indicate that the positive matrix factor, isotope ratio analysis, and material flow analysis methods can be well combined to study the source of heavy metals in soil.
引文
[1] Park E J, Kim D S, Park K. Monitoring of ambient particles and heavy metals in a residential area of Seoul, Korea. Environmental Monitoring and Assessment, 2008, 137(1/3): 441-449.
    [2] Chen L, Zhou S L, Wu S H, Wang C H, Li B J, Li Y, Wang J X. Combining emission inventory and isotope ratio analyses for quantitative source apportionment of heavy metals in agricultural soil. Chemosphere, 2018, 204: 140-147.
    [3] Yalcin M G, Ilhan S. Multivariate analyses to determine the origin of potentially harmful heavy metals in beach and dune sediments from Kizkalesi coast (Mersin), Turkey. Bulletin of Environmental Contamination & Toxicology, 2008, 81(1): 57-68.
    [4] Zhou J, Ma D S, Pan J Y, Nie W M, Wu K. Application of multivariate statistical approach to identify heavy metal sources in sediment and waters: a case study in Yangzhong, China. Environmental Geology, 2008, 54(2): 373-380.
    [5] 方冬青, 魏永杰, 黄伟, 蔡天骐, 张阳, 刘庆阳, 张元勋. 北京市2014年10月重霾污染特征及有机碳来源解析. 环境科学研究, 2016, 29(1): 12-19.
    [6] Budiansky S. Dispersion modeling. Environmental Science and Technology, 1980, 14(4): 370-373.
    [7] Jiang Y X, Chao S H, Liu J W, Yang Y, Chen Y J, Zhang A C, Cao H B. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere, 2016, 168: 1658-1668.
    [8] 苏鹏, 陆达伟, 杨学志, 王伟超, 刘倩, 江桂斌. 非传统稳定同位素在大气颗粒物溯源中的应用. 中国科学: 化学, 2018, 48(10): 1163-1170.
    [9] 魏荣菲, 郭庆军, 杨俊兴, 朱光旭, 张晗芝, Peters M, 王春雨, 万鹰昕. 镉同位素技术在环境科学研究中的应用进展. 生态学杂志, 2014, 33(2): 525-536.
    [10] 朱赖民, 张海生, 陈立奇. 铅稳定同位素在示踪环境污染中的应用. 环境科学研究, 2002, 15(1): 27-30.
    [11] 赵多勇, 郭波莉, 魏益民, 魏帅. 重金属污染源解析研究进展. 安全与环境学报, 2011, 11(4): 98-103.
    [12] Yu Y, Li Y X, Li B, Shen Z Y, Stenstrom M K. Metal enrichment and lead isotope analysis for source apportionment in the urban dust and rural surface soil. Environmental Pollution, 2016, 216: 764-772.
    [13] Chen W Q, Graedel T E. Anthropogenic cycles of the elements: a critical review. Environmental Science & Technology, 2012, 46(16): 8574-8586.
    [14] Shi Y L, Chen W Q, Wu S L, Zhu Y G. Anthropogenic cycles of arsenic in mainland China: 1990-2010. Environmental Science & Technology, 2017, 51(3): 1670-1678.
    [15] Guan Q Y, Wang F F, Xu C Q, Pan N H, Lin J K, Zhao R, Yang Y Y, Luo H P. Source apportionment of heavy metals in agricultural soil based on PMF: a case study in Hexi Corridor, northwest China. Chemosphere, 2018, 193: 189-197.
    [16] 董騄睿, 胡文友, 黄标, 刘刚, 瞿明凯, 邝荣禧. 基于正定矩阵因子分析模型的城郊农田土壤重金属源解析. 中国环境科学, 2015, 35(7): 2103-2111.
    [17] Hao H, Liu Z W, Zhao F Q, Geng Y, Sarkis J. Material flow analysis of lithium in China. Resources Policy, 2017, 51: 100-106.
    [18] 许炼烽, 刘腾辉. 广东土壤环境背景值和临界含量的地带性分异. 华南农业大学学报, 1996, 17(4): 58-62.
    [19] Nicholson F A, Smith S R, Alloway B J, Carlton-Smith C, Chambers B J. An inventory of heavy metals inputs to agricultural soils in England and Wales. Water and Environment Journal, 2006, 20(2): 205-219.
    [20] Liang J, Feng C T, Zeng G M, Gao X, Zhong M Z, Li X D, Li X, He X Y, Fang Y L. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environmental Pollution, 2017, 225: 681-690.
    [21] Holm A. E. coli associated diarrhoea in weaner pigs: zinc oxide added to the feed as a preventive measure//Proceedings of the International Pig Veterinary Society. Congress, Lausanne, Switzerland: IPVS, 1990: 154-154.
    [22] 田贺忠, 曲益萍. 2005年中国燃煤大气砷排放清单. 环境科学, 2009, 30(4): 956-962.
    [23] Lindstr?m M. Urban land use influences on heavy metal fluxes and surface sediment concentrations of small lakes. Water, Air, and Soil Pollution, 2001, 126(3/4): 363-383.
    [24] Arditsoglou A, Samara C. Levels of total suspended particulate matter and major trace elements in Kosovo: a source identification and apportionment study. Chemosphere, 2005, 59(5): 669-678.
    [25] Monaci F, Moni F, Lanciotti E, Grechi D, Bargagli R. Biomonitoring of airborne metals in urban environments: new tracers of vehicle emission, in place of lead. Environmental Pollution, 2000, 107(3): 321-327.
    [26] Legret M, Pagotto C. Evaluation of pollutant loadings in the runoff waters from a major rural highway. Science of the Total Environment, 1999, 235(1/3): 143-150.
    [27] 粮食增产背后土壤污染隐忧: 65%农药排入环境中. (2013-04-14). http://finance.sina.com.cn/china/20130414/231215142480.shtml.
    [28] 郑国江. 浅谈欧盟电器指令对我国机电产品出口的影响. 时代经贸, 2006, 4(5): 7-8.
    [29] 李学洋. 生态纺织品中有害物质的检测及涂层织物成分分析的研究[D]. 天津: 天津大学, 2017.
    [30] Huang K, Li J, Xu Z M. Characterization and recycling of cadmium from waste nickel-cadmium batteries. Waste Management, 2010, 30(11): 2292-2298.
    [31] Luo L, Ma Y B, Zhang S Z, Wei D P, Zhu Y G. An inventory of trace element inputs to agricultural soils in China. Journal of Environmental Management, 2009, 90(8): 2524-2530.
    [32] Tian H Z, Liu K Y, Zhou J R, Lu L, Hao J M, Qiu P P, Gao J J, Zhu C Y, Wang K, Hua S B. Atmospheric emission inventory of hazardous trace elements from China′s coal-fired power plants--temporal trends and spatial variation characteristics. Environmental Science & Technology, 2014, 48(6): 3575-3582.
    [33] Matsuno Y, Hur T, Fthenakis V. Dynamic modeling of cadmium substance flow with zinc and steel demand in Japan. Resources, Conservation and Recycling, 2012, 61: 83-90.
    [34] Huang H X, Li S T, Li X L, Yao J, Cao W D, Wang M, Liu R L. Analysis on the status of organic fertilizer and its development strategies in China. Soil & Fertilizer Sciences in China, 2006.
    [35] Yang Y, Christakos G, Guo M W, Xiao L, Huang W. Space-time quantitative source apportionment of soil heavy metal concentration increments. Environmental Pollution, 2017, 223: 560-566.