东平湖菹草-上覆水-沉积物系统中汞、砷的赋存特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution characteristic of mercury and arsenic in the Potamogeton crispus-overlying water-sediment system of Dongping Lake
  • 作者:殷山红 ; 张智博 ; 肖燕 ; 张真 ; 姚春霞 ; 邓焕广 ; 张菊
  • 英文作者:YIN Shanhong;ZHANG Zhibo;XIAO Yan;ZHANG Zhen;YAO Chunxia;DENG Huanguang;ZHANG Ju;School of Environment and Planning,Liaocheng University;Institute for Agro-Product Quality Standards and Testing Technologies,Shanghai Academy of Agricultural Sciences;
  • 关键词:Hg ; As ; 水体 ; 生物富集 ; 东平湖
  • 英文关键词:mercury;;arsenic;;water body;;bioconcentration;;Dongping Lake
  • 中文刊名:环境化学
  • 英文刊名:Environmental Chemistry
  • 机构:聊城大学环境与规划学院;上海市农业科学院农产品质量标准与检测技术研究所;
  • 出版日期:2019-03-04 17:30
  • 出版单位:环境化学
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金(41401563);; 山东省自然科学基金(ZR2014JL028);; 聊城大学大学生创业创新训练计划(CXCY2018163)资助~~
  • 语种:中文;
  • 页:197-205
  • 页数:9
  • CN:11-1844/X
  • ISSN:0254-6108
  • 分类号:X52;X173
摘要
为了解东平湖菹草-上覆水-沉积物系统中重金属汞(Hg)和砷(As)的含量特征及相互关系,于2015年5月菹草生长的旺盛期在东平湖沿湖采集了33个点位的菹草、上覆水和表层沉积物样品,测定了Hg和As的总量,并采用生物富集系数法评价了菹草对上覆水和表层沉积物中Hg和As的富集能力.结果表明,东平湖上覆水中Hg和As浓度的均值分别为0.769μg·L~(-1)和7.86μg·L~(-1),以地表水环境质量Ⅲ类水标准(GB 3838—2002)为参比,As全部达标;Hg超标率为73.3%,其均值是Ⅲ类水标准值的7.7倍.表层沉积物中Hg和As的含量均值分别为0.072 mg·kg~(-1)和17.09 mg·kg~(-1),分别为山东省土壤背景值的3.6倍和1.8倍.菹草中Hg和As的含量均值分别为0.169(干重)和2.11 mg·kg~(-1)(干重).菹草对上覆水、表层沉积物中Hg、As的富集系数空间差异性较大,且对上覆水中Hg和As的富集系数(16.2—2581.9)远高于对表层沉积物中的富集系数(0.07—26.2).表层沉积物中Hg、As与有机质之间均呈显著正相关性,但Hg、As在菹草-上覆水-沉积物系统中相关性不显著,说明了该系统中Hg、As迁移的复杂性.
        In order to understand the concentrations and correlations of mercury(Hg) and arsenic(As)in the Potamogeton crispus(P. crispus)-overlying water-sediment system of Dongping Lake, P. crispus, overlying water and surface sediment samples were collected in 33 sampling sites during the vigorous growing period of P. crispus in May, 2015. The total concentrations of Hg and As in the samples were analyzed, and the bioconcentration factors(BCFs)were calculated to assess the enrichment of Hg and As in overlying water and surface sediments by P. crispus. The results showed that the average concentrations of Hg and As were 0.769 and 7.86 μg·L~(-1) in the overlying water, respectively. The As concentrations in the overlying water samples were all lower than the class Ⅲ standard value of National Environmental Quality for Surface Water(GB 3838—2002), while the mercury concentrations in 73.3% samples exceeded the standard value and the average concentration of Hg was about 7.7 times of the standard value. The average concentrations of Hg and As in the surface sediments were 0.072 and 17.09 mg·kg~(-1) respectively, which were about 3.6 and 1.8 times of the soil background values of Shandong Province. The average concentrations of Hg and As in P. crispus were 0.169 mg·kg~(-1) and 2.11 mg·kg~(-1) based on the dry weight. The BCFs of P. crispus for Hg and As in the overlying water and surface sediments showed great spatial difference, and the BCFs(16.2—2581.9) of P. crispus for Hg and As in the overlying water were far higher than those(0.07—26.2) in the surface sediments, indicating that P. crispus had higher enrichment capacities for Hg and As in the overlying water than in the surface sediments. The concentrations of mercury, arsenic and organic matter in the surface sediments were significantly positively correlated with each other, neither of Hg and As had significant correlations within the P. crispus-overlying water-sediment system, which indicated the complexity of the transportation of Hg and As in the system.
引文
[1] 蹇丽, 刘洁, 李慧君, 等. 红树林沉积物汞、砷形态分布研究——以东寨港为例[J]. 环境污染与防治, 2016, 38(7): 15-24.JIAN L, LIU J, LI H J, et al. Speciation characteristics of Hg and As in mangrove sediments-a case study at Dongzhai Harbor[J]. Environmental Pollution & Control, 2016, 38(7): 15-24(in Chinese).
    [2] 类宏程, 武周虎, 王芳, 等. 南水北调东线东平湖水流水质模拟[J]. 人民黄河, 2014, 36(7): 80-83.LEI H C, WU Z H, WANG F, et al. Water flow and quality simulation of Dongping Lake in the East-Route of South-to-North Water Transfer Project[J]. Yellow River, 2014, 36(7): 80-83(in Chinese).
    [3] 朱英. 东平湖重金属污染物分布特征及其存在形态的研究[D]. 济南: 山东大学, 2005.ZHU Y. Distribution characteristics and speciation of heavy metal pollutants in Dongping Lake[D]. Ji′nan: Shandong University, 2005(in Chinese).
    [4] 张菊, 邓焕广, 陈诗越, 等. 东平湖水源地水环境健康风险初步评价[J]. 安全与环境学报, 2011, 11(6): 111-115.ZHANG J, DENG H G, CHEN S Y, et al. Eco-environmental health risk assessment of Dongping Lake water-resources[J]. Journal of Safety and Environment, 2011, 11(6): 111-115(in Chinese).
    [5] 张菊, 何振芳, 董杰, 等. 东平湖表层沉积物重金属的空间分布及污染评价[J]. 生态环境学报, 2016, 25(10): 1699-1706.ZHANG J, HE Z F, DONG J, et al. Spatial distribution and pollution assessment of heavy metals in the surface sediments of Dongping Lake[J]. Ecology and Environmental Sciences, 2016, 25(10): 1699-1706(in Chinese).
    [6] 张金路, 段登选, 王志忠. 东平湖菹草大面积衰亡的危害及防治对策[J]. 环境研究与监测, 2009,22(2): 31-33.ZHANG J L, DUAN D X, WANG Z Z. Hazards and countermeasures of large area decline in Potamogeton crispus from Dongping Lake[J]. Environmental Study and Monitoring, 2009,22(2): 31-33(in Chinese).
    [7] 胡天印, 谢佩君, 晏丽蓉, 等. 菹草对底泥中重金属污染的修复效果[J]. 生态科学, 2014, 33(6): 1182-1188.HU T Y, XIE P J, YAN L R, et al. Repairing effect of Potamogeton crispus on heavy metal pollution in sediment[J]. Ecological Science, 2014, 33(6): 1182-1188(in Chinese).
    [8] 孙超, 陈振楼, 张翠, 等. 上海市主要饮用水源地水重金属健康风险初步评价[J]. 环境科学研究, 2009, 22(1): 60-65.SUN C, CHEN Z L, ZHANG C, et al. Health risk assessment of heavy metals in drinking water sources in Shanghai, China[J]. Researnh of Rnvirnnmental Snienres, 2009, 22(1): 60-65(in Chinese).
    [9] 陶征楷, 毕春娟, 陈振楼, 等. 滴水湖沉积物中重金属污染特征与评价[J]. 长江流域资源与环境, 2014, 23(12): 1714-1720.TAO Z K, BI C J, CHEN Z L, et al. Pollution characteristics and assessment of heavy metals in the sediments from Dishui Lake[J]. Resources and Environment in the Yangtze Basin, 2014, 23(12): 1714-1720(in Chinese).
    [10] 杜森, 高祥照. 土壤分析技术规范[M]. 北京: 中国农业出版社, 2006: 36-39.DU S, GAO X Z. Technical specification for soil analysis[M]. Beijing: China Agriculture Press, 2006: 36-39(in Chinese).
    [11] GRANEL T, ROBINSON B, MILLS T, et al. Cadmium accumulation by willow clones used for soil conservation, stock fodder, and phytoreinediation [J]. Australian Journal of Soil Research, 2002, 40(8): 1331-1337.
    [12] LAFABRIE C, MAJOR K M, MAJOR C S, et al. Trace metal contamination of the aquatic plant Hydrilla verticillata and associated sediment in a coastal Alabama creek (Gulf of Mexico-USA) [J]. Marine Pollution Bulletin, 2013, 68: 147-151.
    [13] 李庚飞. 某矿区附近不同作物对3种重金属富集能力的研究[J]. 中国农学通报, 2012, 28(26): 257-261.LI G F. Study on the concentration capacity to three kinds of heavy metals for different crops around the gold area[J]. Chinese Agricultural Science Bulletin, 2012, 28(26): 257-261(in Chinese).
    [14] 国家环境保护总局, 国家质量监督检验检疫总局. GB3838-2002, 地表水环境质量标准[S]. 北京: 中国环境科学出版社, 2002.State Environmental Protection Administration of China, State Administration for Quality Supervision and Inspection and Quarantine of China. Environmental quality standards for surface water: GB 3838-2002[S], 2002(in Chinese).
    [15] GAMMONS H C, SLOTTON G D, GERBRANDT B, et al. Mercury concentrations of fish, river water, and sediment in the Río Ramis-Lake Titicaca watershed, Peru[J]. Sci Total Environ, 2006, 368: 637-648.
    [16] 王利明, 张生, 赵胜男, 等. 乌梁素海水体重金属浓度及空间分布特征[J]. 环境与健康杂志, 2014, 31(12): 1088-1089.WANG L M, ZHANG S, ZHAO S N, et al. Spatial distribution characteristics of heavy metals in Ulansuhai Lake[J]. Journal of Environment and Health, 2014, 31(12): 1088-1089(in Chinese).
    [17] Organization WH ed. Guidelines for drinking-water quality: Recommendations[S]. World Health Organization, 2004.
    [18] 环境保护部. GB15618-1995, 土壤环境质量标准[S]. 北京: 中国标准出版社, 2006.Ministry of Environmental Protection of the People′s Republic of China. Environmental quality standard for soils: GB 15618-1995[S]. Beijing: Standards Press of China, 2006(in Chinese).
    [19] 刘良, 张祖陆. 南四湖表层沉积物重金属的空间分布、来源及污染评价[J]. 水生态学杂志, 2013, 34(6): 7-15.LIU L, ZHANG Z L. Spatial distribution, sources and pollution assesment of heavy metals in the surface sediments of Nansihu Lake[J]. Journal of Hydroecology, 2013, 34(6): 7-15(in Chinese).
    [20] VIGANò L, ARILLO A, BUFFAGNI A, et al. Quality assessment of bed sediments of Po River (Itality)[J]. Water Research, 2003, 37(3): 501-518.
    [21] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990: 329-493.Environmental Monitoring Station. Background value of soil elements in China[M]. Beijing: China Environment Science Press, 1990: 329-493(in Chinese).
    [22] 孙宇婷, 王海云, 张婷, 等. 武汉东湖水生植物重金属分布现状研究[J]. 长江科学院院报, 2016, 33(6): 8-11.SUN Y T, WANG H Y, ZHANG T Y, et al. Distribution of heavy metals in hydrophytes from the East Lake of Wuhan[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(6): 8-11(in Chinese).
    [23] WILDING L P. Spatial variability: Its documentation, accommodation and implication to soil surveys [M]//NIELSEN D R, BOUMA J. Soils Spatial Variability. Wageningen: PUDOC publishers, 1985: 166-194.
    [24] 高海荣, 陈秀丽, 赵爱娟, 等. 5种沉水植物对重金属富集能力的对比研究[J]. 环境保护科学, 2016, 42(4): 101-105.GAO H R, CHEN X L, ZHAO A J, et al. Comparison of heavy metal accumulation by five submerged macrophytes[J]. Environmental Protection Science, 2016, 42(4): 101-105(in Chinese).
    [25] 高静湉, 杜方圆, 李卫平, 等. 黄河湿地小白河片区优势植物重金属的富集特征[J]. 农业环境科学学报, 2016, 35(11): 2180-2186.GAO J T, DU F Y, LI W P, et al. Content and accumulation characteristics of heavy metals in dominant plants in Xiaobaihe Area of the Yellow River Wetland[J]. Journal of Agro-Environment Science, 2016, 35(11): 2180-2186(in Chinese).
    [26] 杜璟. 水生植被恢复对沉积物重金属迁移转化的影响[D]. 上海: 华东师范大学, 2011.DU J. Effects of aquatic vegetation restoration on migration and transformation of heavy metals in sediments[D]. Shanghai: East China Normal University, 2011(in Chinese).
    [27] 关小红, 李修华, 姜利, 等. 氧化-混凝法去除水中As(Ⅲ)的研究进展[J]. 环境科学与技术, 2009, 32(8): 88-92.GUAN X H, LI X H, XIANG L, et al. Review on As(Ⅲ) removal by oxidation and subsequent coagulation[J]. Environmental Science & Technology, 2009, 32(8): 88-92(in Chinese).
    [28] 田渭花, 王蕾, 关建玲, 等. 渭河陕西段水体重金属污染现状及其来源探析[J]. 环境工程技术学报, 2017, 7(6): 684-690.TIAN W H, WANG L, GUAN J L, et al. Heavy metal pollution and source analysis of Weihe River Shaanxi Province[J]. Journal of Environmental Engineering Technology, 2017, 7(6): 684-690(in Chinese).
    [29] 王洪涛, 张俊华, 丁少峰, 等. 开封城市河流表层沉积物重金属分布、污染来源及风险评估[J]. 环境科学学报, 2016, 36(12): 4520-4530.WANG H T, ZHANG J H, DING S F, et al. Distribution characteristics, sources identification and risk assessment of heavy metals in surface sediments of urban rivers in Kaifeng[J]. Acta Scientiae Circumstantiae, 2016, 36(12): 4520-4530(in Chinese).
    [30] GOLIMOWSKI J, SZCZEPA. Voltammetric method for the determination of Zn, Cd, Pb, Cu and Ni in interstitial water [J]. Fresenius′ Journal of Analytical Chemistry, 1996, 354(5-6): 735-737.
    [31] 潘义宏, 王宏镔, 谷兆萍, 等. 大型水生植物对重金属的富集与转移[J]. 生态学报, 2010, 30(23): 6430-6441.PAN Y H, WANG H B, GU Z P, et al. Accumulation and translocation of heavy metals by macrophytes[J]. Acta Ecologica Sinica, 2010, 30(23): 6430-6441(in Chinese).
    [32] DENG H G, ZHANG J, CHEN S Y, et al. Metal release/accumulation during the decomposition of Potamogeton crispus in a shallow macrophytic lake [J]. Journal of Environmental Sciences, 2016, 42(4): 71-78.