用户名: 密码: 验证码:
田块尺度污染农田土壤铅、镉和砷含量的空间变异及其对土地利用的启示
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Field-scale Spatial Variation of Pb, Cd and As in Contaminated Farmland Soils and its Implication for the Utilization of the Farmland
  • 作者:赵宗生 ; 邱坤艳 ; 祝慧娜 ; 卓文飞 ; 韩科 ; 王龙飞 ; 赵林林 ; 李立平
  • 英文作者:ZHAO Zong-sheng;QIU Kun-yan;ZHU Hui-na;ZHUO Wen-fei;HAN Ke;WANG Long-fei;ZHAO Lin-lin;LI Li-ping;Key Laboratory for Monitoring and Remediation of Heavy Metal Polluted Soils of Henan Province;School of Chemistry and the Environment, Henan University of Technology;Agricultural Economy & Information Institute, Henan Academy of Agriculture;
  • 关键词:土壤 ; 重金属 ; 污染 ; 空间分布 ; 稳定 ; 小麦 ;
  • 英文关键词:Soil;;Heavy metal;;Contamination;;Spatial distribution;;Immobilization;;Wheat;;Cd
  • 中文刊名:土壤通报
  • 英文刊名:Chinese Journal of Soil Science
  • 机构:河南省土壤重金属污染监测与修复重点实验室;河南工业大学化学化工与环境学院;河南省农业科学院农业经济与信息研究所;
  • 出版日期:2019-04-06
  • 出版单位:土壤通报
  • 年:2019
  • 期:02
  • 基金:国家重点研发计划(2016YFE0106400);; 国家自然科学基金(41471253);; 河南省土壤重金属污染监测与修复重点实验室开放基金(2017204)资助
  • 语种:中文;
  • 页:228-235
  • 页数:8
  • CN:21-1172/S
  • ISSN:0564-3945
  • 分类号:X53
摘要
为了探明铅冶炼污染区田块尺度下农田土壤重金属含量的空间变异及其对污染农田土壤安全利用的意义,在某冶炼厂附近一面积为4800 m2的农田用网格法采集120个0~20 cm土样,测定样品镉、铅和砷含量。研究表明,研究区土壤中存在砷、镉和铅的积累。从平均污染指数来看,以镉的积累程度最大,铅次之、砷最小。土壤全镉含量的变化范围为1.10~3.84 mg kg-1,镉含量处于1.10~2.27 mg kg-1之间的样品占97.50%。从重金属空间分布上看,镉和铅含量的空间分布有较高的一致性,均是研究区北部和南部含量较高,中间区域含量较低。相关分析表明,土壤镉和铅含量之间存在显著正相关(P <0.01)。根据土壤铅含量计算稳定铅时所用普通过磷酸钙的用量范围为0.312~0.419 kg m-2,平均值为0.367 kg m-2。根据其他研究者得到的土壤全镉含量与小麦籽粒镉含量的相关方程计算,不同方程得到的小麦籽粒镉含量结果有很大差异,较可信的小麦籽粒镉含量变化范围为0.095~0.814 mg kg-1。采样区中部为小麦籽粒镉含量较低且铅稳定剂需要量较低区域。以上结果表明,研究区田块尺度下土壤镉含量存在较大的空间变异,且土壤镉含量的空间变异导致小麦籽粒镉含量可能存在较大的空间变异。
        In order to investigate field-scale spatial variation of heavy metals in farmland soils near a lead smelter,120 soil samples were collected from 0-20 cm depth of a 4800 m2 farmland field by a grid method and were analyzed for Cd, Pb and As. The results showed that As, Cd and Pb were accumulated in the soil following the order of Cd > Pb > As. The Cd concentrations ranged 1.10-3.84 mg kg-1, and 97.5% of soil samples had Cd concentrations of 1.10-2.274 mg kg-1. The spatial distributions of Cd and Pb were more similar than that of As, with higher concentrations in the northern and southern field, but lower in the middle field. Significant correlation(P <0.01) existed between the concentrations of Cd and Pb. The superphosphate dosages calculated by the Pb immobilization ranged 0.312-0.419(mean 0.367) kg m-2. The estimated Cd concentrations in the wheat grain were substantially different among different equations from the published literatures, and the most reliable values ranged 0.095-0.814 mg kg-1. The middle field had a lower Cd concentration of wheat grain and required a lower dosage of phosphate for Pb immobilization. All the results indicated that the spatial distribution of soil Cd concentration exists the large variation at field scale, which results in the large spatial variation of wheat grain Cd concentration.
引文
[1] CHRYSOCHOOU M, DERMATAS D, GRUBB D G. Phosphate application to firing range soils for Pb immobilization:the unclear role of phosphate[J]. Journal of Hazardous Materials, 2007, 144(1/2):1-14.
    [2]赵红安,臧亮,张贵军,等.县域尺度土壤重金属污染特征及源解析-以赵县为例[J].土壤通报, 2018, 49(3):710-719.
    [3] XING W, CAO E, SCHECKEL K G, BAI X, et al. Influence of phosphate amendment and zinc foliar application on heavy metal accumulation in wheat and on soil extractability impacted by a lead-smelter near Jiyuan, China[J]. Environmental Science and Pollution Research, 2018. https://doi.org/10.1007/s11356-018-3126-4.
    [4] CAO X D, MA L Q, SINGH S P, et al. Phosphate-induced lea d immobilization from different lead minerals in soils under varying pH conditions[J]. Environmental Pollution, 2008, 152(1):184-192.
    [5] ADAMS M L, ZHAO F-J, MCGRATH S P, et al. Predicting cadmium concentrations in wheat and barley grain using soil properties[J]. Journal of Environmental Quality, 2004, 33(2):532-41.
    [6] RAN J, WANG D, WANG C, et al. Heavy metal contents,distribution, and prediction in a regional soil-wheat system[J].Science of the Total Environment, 2016, 544:422-431.
    [7]刘克,和文祥,张红,等.镉在小麦各部位的富集和转运及籽粒镉含量的预测模型[J].农业环境科学学报, 2015, 34(8):1441-1448.
    [8]熊孜,李菊梅,赵会薇,等.不同小麦品种对大田中低量镉富集及转运研究[J].农业环境科学学报, 2018, 37(1):36-44.
    [9] REN J, CHEN J, HAN L et al. Spatial distribution of heavy metals,salinity and alkalinity in soils around bauxite residue disposal area[J].Science of the total Environment, 2018, 628-629:1200-1208.
    [10]杨之江,陈效民,景峰,等.基于GIS和地统计学的稻田土壤养分与重金属空间变异[J].应用生态学报, 2018,29(6):1893-1901.
    [11]王纪华,沈涛,陆安祥,等.田块尺度上土壤重金属污染地统计分析及评价[J].农业工程学报, 2008, 24(11):226-229.
    [12]唐希望,同延安,吉普辉,等.关中地区日光温室重金属污染及其田块尺度下的特征[J].干旱区农业研究, 2016, 34(1):272-278.
    [13] STECKER J A, BROWN J R, KITCHEN N R. Residual phosphorus distribution and sorption in starter fertilizer bands applied in no-till culture[J]. Soil Science Society of America Journal, 2001, 65:1173-1183.
    [14]李红伟,李立平,邢维芹.不同小尺度下潮土重金属有效性空间变异研究[J].土壤, 2006, 38(6):782-789.
    [15] AMACHER M C. Nickel, cadmium, and lead[M].//Sparks D L et al eds. Methods of Soil Analysis, Part 3-Chemical Methods, Madison,Wisconsin, USA:Soil Science Society of America Inc, 1996, 739-768.
    [16]中华人民共和国国家质量监督检疫检验总局,中国国家标准化管理委员会.土壤质量总汞、总砷、总铅的测定原子荧光法第二部分土壤中总砷的测定GB/T 22105.2-2008[S].北京:中国标准出版社, 2008.
    [17]河南省土壤普查办公室.河南土壤[M].北京:中国农业出版社,2004:555-613.
    [18]生态环境部,国家市场监督管理总局.土壤环境质量质量标准农用地土壤污染风险管控标准GB15618-2018[S].北京:中国标准出版社, 2018.
    [19]中华人民共和国国家卫生和计划生育委员会,国家食品药品监督管理总局.食品安全国家标准食品中污染物限量GB2716-2017[S].北京:中国标准出版社, 2017.
    [20] WANG Z, HONG C, XING Y, et al. Spatial distribution and sources of heavy metals in natural pasture soil around copper-molybdenum mine in Northeast China[J]. Ecotoxicology and Environmental Safety,2018, 154:329-336.
    [21]邢维芹,李立平,李红伟,等.小尺度下农田潮土Olsen-P的空间分布及其与重金属的关系[J].西北农业学报, 2010, 19(2):122-126.
    [22] QIU K, XING W, SCHECKEL K G, et al. Temporal and seasonal variations of As, Cd and Pb atmospheric deposition flux in the vicinity of lead smelters in Jiyuan, China[J]. Atmospheric Pollution Research, 2016, 7(1):170-179.
    [23] HU W, WANG H, DONG L, et al. Source identification of heavy metals in peri-urban agricultural soils of southeast China:An integrated approach[J]. Environmental Pollution, 2018, 37:650-661.
    [24] LI L, XING W, SCHECKEL K G, et al. Lead retention in a calcareous soil influenced by calcium and phosphate amendments[J].Journal of Hazardous Materials, 2013, 262:250-255.
    [25] CAO X, WAHBI A, MA L, et al. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid[J].Journal of Hazardous Materials, 2009, 164(2-3):555-564.
    [26] MELAMED R, CAO X, CHEN M, et al. Field assessment of lead immobilization in a contaminated soil after phosphate application[J].Science of the total Environment, 2003, 305:117-127.
    [27]卢一富,李真理,阮心玲,等.铅冶炼污染石灰性土壤上冬小麦间作伴矿景天的探讨[J].农业环境科学学报, 2015, 34(9):1686-1692.
    [28]孙亚芳,王祖伟,孟伟庆,等.天津污灌区小麦和水稻重金属的含量及健康风险评价[J].农业环境科学学报, 2015, 34(4):679-685.
    [29] XING W, ZHANG H, SCHECKEL K G, et al. Heavy metal and metalloid concentrations in components of 25 wheat(Triticum aestivum)varieties in the vicinity of lead smelters in Henan Province,China[J]. Environmental Monitoring and Assessment, 2016, 188:23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700