用户名: 密码: 验证码:
热应力对内含裂隙恐龙化石的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Effect of Thermal Stress on Dinosaur Fossils with Inner Crack
  • 作者:陈诚 ; 杜圣贤 ; 于学峰 ; 贾超 ; 张尚坤 ; 罗文强 ; 田京祥
  • 英文作者:CHEN Cheng;DU Shengxian;YU Xuefeng;JIA Chao;ZHANG Shangkun;LUO Wenqiang;TIAN Jingxiang;Shandong Institute of Geological Sciences, Key Laboratory of Gold Mineralization Processes and Resources Utilization Subordinated to the Ministry of Land and Resources,Shandong Key Laboratory of Geological Processes and Resource Utilization in Metallic Minerals;Civil Engineering and Water Conservancy College of Shandong University;
  • 关键词:热应力 ; 恐龙化石 ; 内含裂隙 ; 温差 ; 开裂角 ; 极限载荷
  • 英文关键词:Thermal stress;;dinosaur fossils;;inner cracks;;temperature difference;;crack angle;;limit load
  • 中文刊名:山东国土资源
  • 英文刊名:Shandong Land and Resources
  • 机构:山东省地质科学研究院国土资源部金矿成矿过程与资源利用重点实验室山东省金属矿产成矿地质过程与资源利用重点实验室;山东大学土建与水利学院;
  • 出版日期:2019-04-15
  • 出版单位:山东国土资源
  • 年:2019
  • 期:05
  • 基金:中国地质调查局项目“胶莱盆地白垩纪脊椎动物化石保护、开发方案与规划”(1212011120107);; 山东省重大创新工程“深地资源勘查开采”专项“山东东部海域日青威盆地油气赋存条件研究”(2017CXGC1608);“沂沭断裂带深部结构及对资源环境的影响”(2017CXGC1602)项目联合资助
  • 语种:中文;
  • 页:68-74
  • 页数:7
  • CN:37-1411/P
  • ISSN:1672-6979
  • 分类号:Q915.2
摘要
为深入研究热应力对内含裂隙的恐龙化石的影响,该文模拟10℃,20℃,30℃,40℃,50℃及60℃六种不同温差情形,通过ABAQUS数值模拟软件,揭示地表温度与日照照射在化石表面的温度形成的温差对恐龙化石的影响机制。试验结果表明:在不同温差作用下,热应力的分布主要集中在恐龙化石裂隙的右上角位置,而右下角则没有出现明显的热应力,热应力分布出现不均匀现象,容易诱发恐龙化石开裂,加快风化速度。热应力值随着温差的增大而呈近似线性关系增大。在同一温差、不同轴压条件下,热应力值的增长率呈下降趋势,最大增长率为93.54%,形成于温差为10℃、轴压由0.04MPa变为0.12MPa阶段;热应力值最小增长率为17.46%,形成于温差为60℃、轴压由0.12MPa变为0.20MPa阶段。开裂角随着温差变大而增大,在温差为40℃时,开裂角达51.5°最大值;当温差继续增大时,开裂角呈减小趋势。恐龙化石的极限载荷随着温差的增大而呈下降趋势。其中,温差为10℃时,其极限载荷为最大值2.5MPa,而当温差为60℃时,其极限载荷为最小值1.5MPa。
        In order to further study the effect of thermal stress for further research on dinosaur fossils with inner crack, six kinds of temperature difference in 10 ℃,20℃,30℃,40℃,50℃ and 60℃ have been simulated. The mechanism of effect on dinosaur fossils between surface temperature and the inner temperature has been revealed by using ABAQUS numerical simulation software. As showed by the experimental results, under the action of different temperature difference, the distribution of thermal stress is mainly concentrated in the upper right corner of dinosaur fossils crack, while there is no obvious thermal stress in the lower right corner. The distribution of thermal stress is uneven, which is easy to induce the crack of dinosaur fossil and accelerate the weathering speed. The thermal stress increases approximately linearly with the increase of temperature difference. Under the condition of same temperature difference and different axial compression, the growth rate of thermal stress value has the trend of declining.The largest growth rate is 93.54%, which is formed in the temperature of 10 ℃ and axial compression changing from 0.04 MPa to 0.12 MPa. The minimum growth rate is 17.46%, which is formed in the temperature of 60 ℃ and axial compression changing from 0.12 MPa to 0.20 MPa. Accompanying with the increase of temperature difference, cracking angle will decrease. When the temperature difference is 40 ℃, the maximum cracking angle is 51.5. When the temperature difference continues to increase, the cracking angle shows a decreasing trend. When the temperature difference grows, the limit load of dinosaur fossil will decrease. Among them, when the temperature difference is 10 ℃, the maximum limit load is 2.5 MPa. When the temperature difference is 60 ℃, the minimum limit load is 1.5 MPa.
引文
[1] 汪筱林.中国恐龙研究历史与现状[J].世界地质,1998,17(1):8-21.
    [2] 徐星,赵祺.恐龙巨型化研究进展[J].科学通报,2016,61(7):695-700.
    [3] 钱迈平,胡柏祥,詹庚申,等.大型蜥脚类恐龙研究[J].地质学刊,2010,34(4):337-350.
    [4] 邓建国,刘东亮,叶勇.恐龙化石的人工加速腐蚀研究[J].西南师范大学学报(自然科学版),2014,39(7):47-52.
    [5] Gillooly J.F.,Allen A.P.,Charnov E.L..Dinosaur fossils predict body temperatures[J].Plos Biology,2006,4(8):1467-1469.
    [6] Eberth D.A.,Evans D.C.,Brinkman D.B.,et al..Dinosaur biostratigraphy of the Edmonton Group (Upper Cretaceous),Alberta,Canada:evidence for climate influence[J].Canadian Journal of Earth Sciences,2013,50(7):701-726.
    [7] Martin A.J..Dinosaur burrows in the Otway Group (Albian) of Victoria, Australia, and their relation to Cretaceous polar environments[J].Cretaceous Research,2009,30(5):1223-1237.
    [8] Brusatte S.L.,Benson R.B.J.,Xu X.,et al.The evolution of large-bodied theropod dinosaurs during the Mesozoic in Asia[J].Journal of Iberian Geology,2010,36(2):275-296.
    [9] 张尚坤,于学峰,贾超,等.热应力对恐龙化石风化损坏的影响研究[J].山东国土资源,2018,34(5):42-48.
    [10] 杜圣贤,张尚坤,于学峰,等.恐龙化石风化效应的TM耦合分析研究[J].山东国土资源,2015,31(10):65-70.
    [11] 耿毅德,梁卫国,刘剑,等.不同温压条件下油页岩孔裂隙结构演化试验研究[J].岩石力学与工程学报,2018,37(11):2510-2519.
    [12] 杜圣贤,宋香锁,陈军,等.全国古生物化石保护工程研究[J].山东国土资源,2017,33(1):10-34.
    [13] 冯伟,韩立军.基于ABAQUS数值模拟的采区巷道断面形状优化研究[J].煤炭工程,2013(2):83-86.
    [14] 陈晶.考虑固结的摩擦型单桩ABAQUS数值模拟[J].河南科学,2010,28(11):1431-1433.
    [15] 陶干强,宋丽霞,孙冰,等.某地下矿山充填采矿过程的ABAQUS数值模拟分析[J].金属矿山,2007(10):42-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700