用户名: 密码: 验证码:
模拟增温对杉木幼树生长和光合特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of soil warming on growth and photosynthetic characteristics of Cunninghamia lanceolata saplings
  • 作者:叶旺敏 ; 熊德成 ; 杨智杰 ; 朱益广 ; 张秋芳 ; 刘小飞 ; 林伟盛 ; 胥超 ; 张景 ; 杨玉盛
  • 英文作者:YE Wangmin;XIONG Decheng;YANG Zhijie;ZHU Yiguang;ZHANG Qiufang;LIU Xiaofei;LIN Weisheng;XU Chao;ZHANG Jing;YANG Yusheng;School of Geographical Sciences, Fujian Normal University;Cultivation Base of State Key Laboratory of Humid Subtropical Mountain Ecology;College of Earth and Mineral Sciences, Pennsylvania State University;
  • 关键词:土壤增温 ; 杉木 ; 光合特性 ; 叶绿素含量 ; 非结构性碳水化合物
  • 英文关键词:soil warming;;Cunninghamia lanceolata;;photosynthesis;;chlorophyll;;non-structural carbohydrate
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:福建师范大学地理科学学院;湿润亚热带山地生态国家重点实验室培育基地;宾夕法尼亚州立大学;
  • 出版日期:2019-01-10 09:10
  • 出版单位:生态学报
  • 年:2019
  • 期:07
  • 基金:国家自然科学基金项目(31500408);; 国家重大基础研究计划课题(2014CB954003)
  • 语种:中文;
  • 页:239-247
  • 页数:9
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:S791.27
摘要
为阐明杉木生长特征及光合能力对未来全球变暖的响应方式,通过在福建省三明市森林生态系统与全球变化研究站陈大观测点内开展的土壤增温(电缆加热,+4℃)实验,研究了增温条件下杉木幼树生长(树高、地径)特征及光合作用参数的变化,并对土壤有效氮(N)、叶片N含量、叶绿素含量(Chl)及非结构性碳水化合物(NSC)指标进行了测定。结果表明:1)在增温条件下,杉木幼树净光合速率(P_n)和水分利用效率(WUE)显著增加,分别增加了71.4%、51.3%,增温后杉木叶片能维持较高的气孔导度(G_s)、蒸腾速率(T_r)和胞间二氧化碳浓度(C_i)。2)增温促进土壤有机氮矿化作用,使土壤中可供植物吸收利用的有效N含量显著增加,从而引起杉木叶片N含量显著提高。而N作为叶绿素的重要组成物质,增温后,叶片N含量显著提高,最终导致杉木幼树叶片Chl a、Chl b及Chl总量显著增加,增加比例分别为76.3%、55.8%、68.7%,Chl a/b值亦呈增加趋势。3)增温对杉木幼树生长及叶片NSC含量并无显著影响。综上所述,增温通过改变杉木叶片气孔导度敏感性以及促进杉木叶片Chl含量合成,增加叶片对CO_2的吸收以及光能捕获能力,进而提高光合效率。同时,增温引起的根系高温可能大幅度提高杉木呼吸强度,加剧对杉木叶片碳水化合物的消耗过程,使其NSC含量无显著变化,从而导致杉木幼树生长无显著差异。
        Global warming has a strong effect on forests, an important part of the terrestrial ecosystem, because temperature change easily influences photosynthesis. At present, most studies about global warming′s effects on photosynthesis are concentrated in high latitudes and alpine regions, with few reports from subtropical forests. Cunninghamia lanceolata is the main species used in afforestation in subtropical China. To clarify how C. lanceolata growth and photosynthesis respond to future global warming, we conducted a soil warming(cable heating, +4℃) experiment at Chenda observation point in the Sanming Research Station of Forest Ecosystem and Global Change, Fujian Province. We estimated growth variables(tree height and ground diameter), variation in photosynthesis, soil inorganic nitrogen(N) content, leaf N content, chlorophyll content(Chl), and non-structural carbohydrates(NSC). The results showed that under soil warming, net photosynthetic rate(P_n) and water use efficiency(WUE) of C. lanceolata seedlings increased by 71.4% and 51.3%, respectively. Additionally, stomatal conductance(G_s), transpiration rate(T_r), and intercellular carbon dioxide concentration(C_i) were maintained at high levels. Increasing soil temperature also promoted the mineralization of soil organic N, elevating available N for plant absorption and use. These changes caused significant increase in N content of C. lanceolata leaves. Because N is a major chlorophyll component, we also observed a notable increase in total Chl a, Chl b, and Chl by 76.3%, 55.8%, and 68.7%, respectively. The ratio of Chl a to b also increased. Soil warming did not significantly alter tree height, ground diameter, and leaf NSC content of C. lanceolata seedlings. In summary, soil warming improves C. lanceolata photosynthetic efficiency through altering stomatal conductance sensitivity and promoting Chl synthesis in leaves, thus increasing CO_2 absorption and light capturing ability. Simultaneously, warming-induced elevation in rhizosphere temperature may significantly increase respiration rate, accelerating carbohydrate consumption. Therefore, even after three months of soil warming, leaf NSC content and sapling growth did not significantly change. This experiment demonstrates that C. lanceolata growth and photosynthetic capacity adapts to global warming, providing a reference for predicting potential carbon sequestration of subtropical plantations in China.
引文
[1] 闫志平,魏振,李树人,侯桂英,张俊杰.森林在陆地生态系统中主体地位的探讨.河南农业大学学报,2004,38(2):167- 173.
    [2] 郑兴波.长白山阔叶红松林土壤呼吸变化规律及驱动机制的研究[D].哈尔滨:东北林业大学,2006.
    [3] IPCC.Climate Change 2013:the Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge:Cambridge University Press,2013.
    [4] Wiencke C,Rahmel J,Karsten U,Weykam G,Kirst G O.Photosynthesis of marine macroalgae from Antarctica:light and temperature requirements.Plant Biology,1993,106(1):78- 87.
    [5] Kirschbaum M U F,Farquhar G D.Temperature dependence of whole-leaf photosynthesis in Eucalyptus pauciflora sieb.ex spreng.Australian Journal of Plant Physiology,1984,11(6):519- 538.
    [6] Ruiz-Vera U M,Siebers M,Gray S B,Drag D W,Rosenthal D M,Kimball B A,Ort D R,Bernacchi C J.Global warming can negate the expected CO2 stimulation in photosynthesis and productivity for soybean grown in the Midwestern United States.Plant Physiology,2013,162(1):410- 423.
    [7] Yang Y,Wang G X,Yang L D,Guo J Y.Effects of drought and warming on biomass,nutrient allocation,and oxidative stress in Abies fabri in eastern Tibetan Plateau.Journal of Plant Growth Regulation,2013,32(2):298- 306.
    [8] Fu G,Shen Z X,Sun W,Zhong Z M,Zhang X Z,Zhou Y T.A meta-analysis of the effects of experimental warming on plant physiology and growth on the Tibetan Plateau.Journal of Plant Growth Regulation,2015,34(1):57- 65.
    [9] 任洁,王慧梅,王文杰,曲丹,王琼,仲召亮.温度升高对杨树树皮绿色组织和叶片光合作用、叶绿素荧光特性的影响.植物研究,2014,34(6):758- 764.
    [10] 韩超,申海玉,刘庆.云杉种子萌发和幼苗生长对气候变暖与UV-B 辐射增强的响应.西北植物学报,2012,32(8):1632- 1638.
    [11] Jochum G M,Mudge K W,Thomas R B.Elevated temperatures increase leaf senescence and root secondary metabolite concentrations in the understory herb Panax quinquefolius (Araliaceae).American Journal of Botany,2007,94(5):819- 826.
    [12] León-Sánchez L,Nicolás E,Nortes P A,Maestre F T,Querejeta J I.Photosynthesis and growth reduction with warming are driven by nonstomatal limitations in a mediterranean semi-arid shrub.Ecology and Evolution,2016,6(9):2725- 2738.
    [13] 赵琴,潘静,曹兵,宋丽华.气温升高与干旱胁迫对宁夏枸杞光合作用的影响.生态学报,2015,35(18):6016- 6022.
    [14] Llorens L,Peňuelas J,Beier C,Emmett B,Estiarte M,Tietema A.Effects of an experimental increase of temperature and drought on the photosynthetic performance of two ericaceous shrub species along a north-south European gradient.Ecosystems,2004,7(6):613- 624.
    [15] Bauweraerts I,Mannaerts T B H L,Wertin T M,McGuire M A,Teskey R O,Steppe K.Elevated [CO2] and growth temperature have a small positive effect on photosynthetic thermos tolerance of Pinus taeda seedlings.Trees,2014,28(5):1515- 1526.
    [16] 孟庆志,乔建华,赵萌君,袁雅丽.高海拔冻土层地区不同土壤温度对花叶海棠光合特性的影响.西南林业大学学报,2017,37(1):26- 30.
    [17] Way D A,Oren R,Kroner Y.The space-time continuum:the effects of elevated CO2 and temperature on trees and the importance of scaling.Plant,Cell & Environment,2015,38(6):991- 1007.
    [18] Wang J C,Duan B L,Zhang Y B.Effects of experimental warming on growth,biomass allocation,and needle chemistry of Abies faxoniana in even-aged monospecific stands.Plant Ecology,2012,213(1):47- 55.
    [19] Li D J,Zhou X H,Wu L Y,Zhou J Z,Luo Y Q.Contrasting responses of heterotrophic and autotrophic respiration to experimental warming in a winter annual-dominated prairie.Global Change Biology,2013,19(11):3553- 3564.
    [20] Crowther T W,Todd-Brown K E O,Rowe C W,Wieder W R,Carey J C,Machmuller M B,Snoek B L,Fang S,Zhou G,Allison S D,Blair J M,Bridgham S D,Burton A J,Carrillo Y,Reich P B,Clark J S,Classen A T,Dijkstra F A,Elberling B,Emmett B A,Estiarte M,Frey S D,Guo J,Harte J,Jiang L,Johnson B R,Kr?el-Dulay G,Larsen K S,Laudon H,Lavallee J M,Luo Y,Lupascu M,Ma L N,Marhan S,Michelsen A,Mohan J,Niu S,Pendall E,Peňuelas J,Pfeifer-Meister L,Poll C,Reinsch S,Reynolds L L,Schmidt I K,Sistla S,Sokol N W,Templer P H,Treseder K K,Welker J M,Bradford M A.Quantifying global soil carbon losses in response to warming.Nature,2016,540(7631):104- 108.
    [21] Feeley K J,Davies S J,Ashton P S,Bunyavejchewin S,Nur Supardi M N,Kassim A R,Tan S,Chave J.The role of gap phase processes in the biomass dynamics of tropical forests.Proceedings of the Royal Society B:Biological Sciences,2007,274(1627):2857- 2864.
    [22] Thomas C D,Cameron A,Green R E,Bakkenes M,Beaumont L J,Collingham Y C,Erasmus B F N,de Siqueira M F,Grainger A,Hannah L,Hughes L,Huntley B,van Jaarsveld A S,Midgley G F,Miles L,Ortega-Huerta M A,Peterson A T,Phillips O L,Williams S E.Extinction risk from climate change.Nature,2004,427(6970):145- 148.
    [23] Dusenge M E,Way D A.Warming puts the squeeze on photosynthesis-lessons from tropical trees.Journal of Experimental Botany,2017,68(9):2073- 2077.
    [24] 石军南.亚热带森林植被生物量与碳贮量特征[D].株洲:中南林业科技大学,2010.
    [25] 邸富宏.中国南方杉木人工林碳动态模拟研究.西北农林科技大学学报:自然科学版,2016,44(8):127- 134.
    [26] Chen G S,Yang Z J,Gao R,Xie J S,Guo J F,Huang Z Q,Yang Y S.Carbon storage in a chronosequence of Chinese fir plantations in southern China.Forest Ecology and Management,2013,300:68- 76.
    [27] 王学奎.植物生理生化实验原理和技术(第二版).北京:高等教育出版社,2006.
    [28] Buysse J,Merckx R.An improved colorimetric method to quantify sugar content of plant tissue.Journal of Experimental Botany,1993,44(10):1627- 1629.
    [29] 于丽敏,王传宽,王兴昌.三种温带树种非结构性碳水化合物的分配.植物生态学报,2011,35(12):1245- 1255.
    [30] 姚庆群,谢贵水.干旱胁迫下光合作用的气孔与非气孔限制.热带农业科学,2005,25(4):80- 85.
    [31] 战伟,沙伟,王淼,师帅,问青春.降水和温度变化对长白山地区水曲柳幼苗生长和光合参数的影响.应用生态学报,2012,23(3):617- 624.
    [32] 石福孙,吴宁,吴彦,王乾.模拟增温对川西北高寒草甸两种典型植物生长和光合特征的影响.应用与环境生物学报,2009,15(6):750- 755.
    [33] 张秋芳,吕春平,贝昭贤,谢锦升,吕茂奎,林伟盛,陈岳民,杨玉盛.野外模拟增温对亚热带杉木叶片膜脂过氧化及保护酶活性的影响.植物生态学报,2016,40(12):1230- 1237.
    [34] Melillo J M,Steudler P A,Aber J D,Newkirk K,Lux H,Bowles F P,Catricala C,Magill A,Ahrens T,Morrisseau S.Soil warming and carbon-cycle feedbacks to the climate system.Science,2002,298(5601):2173- 2176.
    [35] 刘志江,林伟盛,杨舟然,林廷武,刘小飞,陈岳民,杨玉盛.模拟增温和氮沉降对中亚热带杉木幼林土壤有效氮的影响.生态学报,2017,37(1):44- 53.
    [36] 屠臣阳,皇甫超河,姜娜,王楠楠,陈冬青,杨殿林,高尚宾.不同生境黄顶菊碳氮磷化学计量特征.中国农学通报,2013,29(17):171- 176.
    [37] 顾大形,陈双林,黄玉清.土壤氮磷对四季竹叶片氮磷化学计量特征和叶绿素含量的影响.植物生态学报,2011,35(12):1219- 1225.
    [38] 张绪成,上官周平.施氮对不同抗旱性冬小麦叶片光合与呼吸的调控.应用生态学报,2006,17(11):2064- 2069.
    [39] Kattge J,Knorr W,Raddatz T,Wirth C.Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models.Global Change Biology,2009,15(4):976- 991.
    [40] Xu Z F,Yin H J,Xiong P,Wan C,Liu Q.Short-term responses of Picea asperata seedlings of different ages grown in two contrasting forest ecosystems to experimental warming.Environmental and Experimental Botany,2012,77:1- 11.
    [41] 陈永聚,林喜珀,余荣鹏,林华友,王馨慧,刘楠.群落演替中光和土壤环境改变对植物光合色素的影响.绿色科技,2016,(14):1- 3.
    [42] 潘瑞炽.植物生理学(第四版).北京:高等教育出版社,2001.
    [43] 石福孙,吴宁,吴彦.川西北高寒草地3种主要植物的生长及物质分配对温度升高的响应.植物生态学报,2010,34(5):488- 497.
    [44] Würth M K R,Peláez-Riedl S,Wright J S,K?rner C.Non-structural carbohydrate pools in a tropical forest.Oecologia,2005,143(1):11- 24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700